Preferencias con indiferencia no transitiva: problemas abiertos relativos a órdenes-intervalo
暂无分享,去创建一个
[1] G. Bosi,et al. Representing preferences with nontransitive indifference by a single real-valued function☆ , 1995 .
[2] J. Jaffray. Existence of a Continuous Utility Function: An Elementary Proof , 1975 .
[3] D. Bridges. Numerical representation of intransitive preferences on a countable set , 1983 .
[4] Esteban Induráin Eraso,et al. Sobre caracterizaciones topológicas de la representabilidad de cadenas mediante funciones de utilidad , 1990 .
[5] Juan Carlos Candeal,et al. Utility functions on chains , 1993 .
[6] G. Debreu,et al. Theory of Value , 1959 .
[7] A. Tversky. Intransitivity of preferences. , 1969 .
[8] D. Scott. Measurement structures and linear inequalities , 1964 .
[9] S. Gensemer. Continuous semiorder representations , 1987 .
[10] A. Chateauneuf. Continuous representation of a preference relation on a connected topological space , 1987 .
[11] G. Debreu. Mathematical Economics: Continuity properties of Paretian utility , 1964 .
[12] Juan Carlos Candeal,et al. Archimedeaness and additive utility on totally ordered semigroups , 1996 .
[13] D. Bridges. Numerical representation of interval orders on a topological space , 1986 .
[14] P. Fishburn. Intransitive indifference with unequal indifference intervals , 1970 .
[15] G. Debreu. Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .
[16] P. Fishburn. Interval representations for interval orders and semiorders , 1973 .
[17] R. Luce. Semiorders and a Theory of Utility Discrimination , 1956 .
[18] E. Induráin,et al. Representability of Interval Orders , 1998 .
[19] Peter C. Fishburn,et al. Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..
[20] Patrick Suppes,et al. Foundational aspects of theories of measurement , 1958, Journal of Symbolic Logic.
[21] Patrick Suppes,et al. Basic measurement theory , 1962 .
[22] Robert Bowen. A New Proof of a Theorem in Utility Theory , 1968 .
[23] Jutta Mitas. Interval orders based on arbitrary ordered sets , 1995, Discret. Math..
[24] Kenneth P. Bogart. An obvious proof of Fishburn's interval order theorem , 1993, Discret. Math..
[25] D. Krantz. Extensive Measurement in Semiorders , 1967, Philosophy of Science.
[26] Esteban Induráin Eraso,et al. APLICACIONES BIVARIANTES QUE REPRESENTAN SEMIGRUPOS ORDENADOS , 1996 .
[27] C. Rodríguez-Palmero. A representation of acyclic preferences , 1997 .