Preferencias con indiferencia no transitiva: problemas abiertos relativos a órdenes-intervalo

[1]  G. Bosi,et al.  Representing preferences with nontransitive indifference by a single real-valued function☆ , 1995 .

[2]  J. Jaffray Existence of a Continuous Utility Function: An Elementary Proof , 1975 .

[3]  D. Bridges Numerical representation of intransitive preferences on a countable set , 1983 .

[4]  Esteban Induráin Eraso,et al.  Sobre caracterizaciones topológicas de la representabilidad de cadenas mediante funciones de utilidad , 1990 .

[5]  Juan Carlos Candeal,et al.  Utility functions on chains , 1993 .

[6]  G. Debreu,et al.  Theory of Value , 1959 .

[7]  A. Tversky Intransitivity of preferences. , 1969 .

[8]  D. Scott Measurement structures and linear inequalities , 1964 .

[9]  S. Gensemer Continuous semiorder representations , 1987 .

[10]  A. Chateauneuf Continuous representation of a preference relation on a connected topological space , 1987 .

[11]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[12]  Juan Carlos Candeal,et al.  Archimedeaness and additive utility on totally ordered semigroups , 1996 .

[13]  D. Bridges Numerical representation of interval orders on a topological space , 1986 .

[14]  P. Fishburn Intransitive indifference with unequal indifference intervals , 1970 .

[15]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[16]  P. Fishburn Interval representations for interval orders and semiorders , 1973 .

[17]  R. Luce Semiorders and a Theory of Utility Discrimination , 1956 .

[18]  E. Induráin,et al.  Representability of Interval Orders , 1998 .

[19]  Peter C. Fishburn,et al.  Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..

[20]  Patrick Suppes,et al.  Foundational aspects of theories of measurement , 1958, Journal of Symbolic Logic.

[21]  Patrick Suppes,et al.  Basic measurement theory , 1962 .

[22]  Robert Bowen A New Proof of a Theorem in Utility Theory , 1968 .

[23]  Jutta Mitas Interval orders based on arbitrary ordered sets , 1995, Discret. Math..

[24]  Kenneth P. Bogart An obvious proof of Fishburn's interval order theorem , 1993, Discret. Math..

[25]  D. Krantz Extensive Measurement in Semiorders , 1967, Philosophy of Science.

[26]  Esteban Induráin Eraso,et al.  APLICACIONES BIVARIANTES QUE REPRESENTAN SEMIGRUPOS ORDENADOS , 1996 .

[27]  C. Rodríguez-Palmero A representation of acyclic preferences , 1997 .