Atomistic/Continuum Blending with Ghost Force Correction

We combine the ideas of atomistic/continuum energy blending and ghost force correction to obtain an energy-based atomistic/continuum coupling scheme which has, for a range of benchmark problems, the same convergence rates as optimal force-based coupling schemes. We present the construction of this new scheme, numerical results exploring its accuracy in comparison with established schemes, as well as a rigorous error analysis for an instructive special case.

[1]  Alexander V. Shapeev,et al.  Analysis of an energy-based atomistic/continuum approximation of a vacancy in the 2D triangular lattice , 2013, Math. Comput..

[2]  Christoph Ortner,et al.  Construction and sharp consistency estimates for atomistic/continuum coupling methods with general interfaces: a 2D model problem , 2011 .

[3]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[4]  Brian Van Koten,et al.  Analysis of Energy-Based Blended Quasi-Continuum Approximations , 2011, SIAM J. Numer. Anal..

[5]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.

[6]  Alexander V. Shapeev,et al.  Analysis of blended atomistic/continuum hybrid methods , 2014, Numerische Mathematik.

[7]  Pavel B. Bochev,et al.  Development of an Optimization-Based Atomistic-to-Continuum Coupling Method , 2013, LSSC.

[8]  Alexander V. Shapeev,et al.  Analysis of an Energy-based Atomistic/Continuum Coupling Approximation of a Vacancy in the 2D Triangular Lattice , 2011 .

[9]  A. Shapeev,et al.  Interpolants of lattice functions for the analysis of atomistic/continuum multiscale methods , 2012, 1204.3705.

[10]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[11]  Christoph Ortner,et al.  THE ROLE OF THE PATCH TEST IN 2D ATOMISTIC-TO-CONTINUUM COUPLING METHODS ∗ , 2011, 1101.5256.

[12]  Christoph Ortner,et al.  Stability, Instability, and Error of the Force-based Quasicontinuum Approximation , 2009, 0903.0610.

[13]  Christoph Ortner,et al.  Atomistic-to-continuum coupling , 2013, Acta Numerica.

[14]  Christoph Ortner,et al.  Energy-based atomistic-to-continuum coupling without ghost forces , 2013, 1312.6814.

[15]  Tomotsugu Shimokawa,et al.  Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region , 2004 .

[16]  Alexander V. Shapeev,et al.  Theory-based benchmarking of the blended force-based quasicontinuum method☆ , 2013, 1304.1368.

[17]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[18]  Mitchell Luskin,et al.  Analysis of a force-based quasicontinuum approximation , 2006 .

[19]  M. Luskin,et al.  Formulation and optimization of the energy-based blended quasicontinuum method , 2011, 1112.2377.

[20]  V. Ehrlacher,et al.  Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations , 2013, 1306.5334.

[21]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[22]  Endre Süli,et al.  A Priori Error Analysis of Two Force-Based Atomistic/Continuum Hybrid Models of a Periodic Chain , 2011 .

[23]  Weinan E,et al.  Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems , 2007 .

[24]  Jianfeng Lu,et al.  Convergence of a Force‐Based Hybrid Method in Three Dimensions , 2013 .

[25]  Christoph Ortner,et al.  Construction and Sharp Consistency Estimates for Atomistic/Continuum Coupling Methods with General Interfaces: A Two-Dimensional Model Problem , 2012, SIAM J. Numer. Anal..