Local Reconstruction Codes: A Class of MDS-PIR Capacity-Achieving Codes

We prove that a class of distance-optimal local re-construction codes (LRCs), an important family of repair-efficient codes for distributed storage systems, achieve the maximum distance separable private information retrieval capacity for the case of noncolluding nodes. This particular class of codes includes Pyramid codes and other LRCs proposed in the literature.

[1]  Dimitris S. Papailiopoulos,et al.  XORing Elephants: Novel Erasure Codes for Big Data , 2013, Proc. VLDB Endow..

[2]  P. Vijay Kumar,et al.  Codes With Local Regeneration and Erasure Correction , 2014, IEEE Transactions on Information Theory.

[3]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval From Coded Databases , 2016, IEEE Transactions on Information Theory.

[4]  Kannan Ramchandran,et al.  One extra bit of download ensures perfectly private information retrieval , 2014, 2014 IEEE International Symposium on Information Theory.

[5]  Hirosuke Yamamoto,et al.  Private information retrieval for coded storage , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[6]  Salim El Rouayheb,et al.  Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[7]  Cheng Huang,et al.  Erasure Coding in Windows Azure Storage , 2012, USENIX Annual Technical Conference.

[8]  Minghua Chen,et al.  Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency in Reliable Data Storage Systems , 2007, Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007).

[9]  Eyal Kushilevitz,et al.  Private information retrieval , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[10]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[11]  Camilla Hollanti,et al.  $t$ -Private Information Retrieval Schemes Using Transitive Codes , 2017, IEEE Transactions on Information Theory.

[12]  Hsuan-Yin Lin,et al.  Achieving Maximum Distance Separable Private Information Retrieval Capacity With Linear Codes , 2017, IEEE Transactions on Information Theory.

[13]  Alexandre Graell i Amat,et al.  Private information retrieval in distributed storage systems using an arbitrary linear code , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[14]  Camilla Hollanti,et al.  Private Information Retrieval from Coded Databases with Colluding Servers , 2016, SIAM J. Appl. Algebra Geom..