Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity

Mouse RNase H2 is essential to remove ribonucleotides from the genome to prevent DNA damage.

[1]  Martin A. M. Reijns,et al.  Enzymatic Removal of Ribonucleotides from DNA Is Essential for Mammalian Genome Integrity and Development , 2012, Cell.

[2]  D. Stetson,et al.  Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. , 2012, Immunity.

[3]  P. Hieter,et al.  R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. , 2012, Genes & development.

[4]  Danielle L. Watt,et al.  RNase H and Postreplication Repair Protect Cells from Ribonucleotides Incorporated in DNA , 2012, Molecular cell.

[5]  A. Helmrich,et al.  Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. , 2011, Molecular cell.

[6]  D. Koshland,et al.  RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. , 2011, Molecular cell.

[7]  Y. Crow Type I interferonopathies: a novel set of inborn errors of immunity , 2011, Annals of the New York Academy of Sciences.

[8]  Y. Pommier,et al.  Mutagenic Processing of Ribonucleotides in DNA by Yeast Topoisomerase I , 2011, Science.

[9]  M. Mclaughlin,et al.  Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression , 2011, Cell.

[10]  Martin A. M. Reijns,et al.  PCNA directs type 2 RNase H activity on DNA replication and repair substrates , 2011, Nucleic acids research.

[11]  Martin A. M. Reijns,et al.  The Structure of the Human RNase H2 Complex Defines Key Interaction Interfaces Relevant to Enzyme Function and Human Disease* , 2010, The Journal of Biological Chemistry.

[12]  Danielle L. Watt,et al.  Genome instability due to ribonucleotide incorporation into DNA , 2010, Nature chemical biology.

[13]  S. Takashima,et al.  Transmission distortion by loss of p21 or p27 cyclin-dependent kinase inhibitors following competitive spermatogonial transplantation , 2010, Proceedings of the National Academy of Sciences.

[14]  Jonathan C. Fuller,et al.  Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response , 2009, Nature Genetics.

[15]  R. Crouch,et al.  Ribonuclease H: the enzymes in eukaryotes , 2009, The FEBS journal.

[16]  T. Heidmann,et al.  Trex1 Prevents Cell-Intrinsic Initiation of Autoimmunity , 2008, Cell.

[17]  D. Barnes,et al.  Trex1 Exonuclease Degrades ssDNA to Prevent Chronic Checkpoint Activation and Autoimmune Disease , 2007, Cell.

[18]  J. Lieberman,et al.  Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus , 2007, Nature Genetics.

[19]  P. Chomczyński,et al.  The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on , 2006, Nature Protocols.

[20]  D. Barnes,et al.  Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus , 2006, Nature Genetics.

[21]  C. Ponting,et al.  Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection , 2006, Nature Genetics.

[22]  D. Barnes,et al.  Gene-Targeted Mice Lacking the Trex1 (DNase III) 3′→5′ DNA Exonuclease Develop Inflammatory Myocarditis , 2004, Molecular and Cellular Biology.

[23]  A. Stewart,et al.  A reliable lacZ expression reporter cassette for multipurpose, knockout‐first alleles , 2004, Genesis.

[24]  Y. Pommier,et al.  Phosphorylation of Histone H2AX and Activation of Mre11, Rad50, and Nbs1 in Response to Replication-dependent DNA Double-strand Breaks Induced by Mammalian DNA Topoisomerase I Cleavage Complexes* , 2003, Journal of Biological Chemistry.

[25]  Reynaldo Sequerra,et al.  High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP , 2000, Nature Genetics.

[26]  K. Kinzler,et al.  Requirement for p53 and p21 to sustain G2 arrest after DNA damage. , 1998, Science.

[27]  V. Luria,et al.  Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase , 1998, Transgenic Research.

[28]  S. Shuman,et al.  Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. , 1997, Molecular cell.

[29]  K. Rajewsky,et al.  B lymphocyte-specific, Cre-mediated mutagenesis in mice. , 1997, Nucleic acids research.

[30]  J. Turchi,et al.  Enzymatic completion of mammalian lagging-strand DNA replication. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M Aguet,et al.  Functional role of type I and type II interferons in antiviral defense. , 1994, Science.

[32]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[33]  M. Mclaughlin,et al.  Distinct p 53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression , 2011 .