A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation
暂无分享,去创建一个
[1] G. Quispel,et al. A new class of energy-preserving numerical integration methods , 2008 .
[2] B. Hulme. One-step piecewise polynomial Galerkin methods for initial value problems , 1972 .
[3] F. Iavernaro,et al. s‐stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type , 2007 .
[4] P. Drazin,et al. Solitons: An Introduction , 1989 .
[5] L. Brugnano,et al. Line Integral Methods for Conservative Problems , 2015 .
[6] M. Qin,et al. MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .
[7] N. Zabusky,et al. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .
[8] F. Iavernaro,et al. High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems 1 2 , 2009 .
[9] C. Canuto. Spectral methods in fluid dynamics , 1991 .
[10] C. S. Gardner,et al. Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .
[11] Donato Trigiante,et al. A note on the efficient implementation of Hamiltonian BVMs , 2010, J. Comput. Appl. Math..
[12] Luis Vega,et al. Discrete conservation laws and the convergence of long time simulations of the mkdv equation , 2011, J. Comput. Phys..
[13] Chunxiong Zheng,et al. Numerical simulation of a modified KdV equation on the whole real axis , 2006, Numerische Mathematik.
[14] R. Miura. The Korteweg–deVries Equation: A Survey of Results , 1976 .
[15] L. Brugnano,et al. A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..
[16] T. Bridges. Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] L. Gardner,et al. Solitary wave solutions of the MKdV− equation , 1995 .
[18] Donato Trigiante,et al. Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems , 2009, Commun. Nonlinear Sci. Numer. Simul..
[19] Hailiang Liu,et al. A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: Energy conservation and boundary effect , 2013, J. Comput. Phys..
[20] G. Quispel,et al. Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[21] Luigi Brugnano,et al. Energy conservation issues in the numerical solution of the semilinear wave equation , 2014, Appl. Math. Comput..
[22] Xinhua Zhang,et al. Energy-preserving finite volume element method for the improved Boussinesq equation , 2014, J. Comput. Phys..
[23] Yulong Xing,et al. Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation , 2013, Math. Comput..
[24] F. Smith,et al. Conservative, high-order numerical schemes for the generalized Korteweg—de Vries equation , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[25] O. Gonzalez. Time integration and discrete Hamiltonian systems , 1996 .
[26] M. Wadati,et al. The Exact Solution of the Modified Korteweg-de Vries Equation , 1972 .
[27] De-kang Mao,et al. Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation , 2007, J. Comput. Phys..
[28] L. Vu-Quoc,et al. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .
[29] Donato Trigiante,et al. Numerical Solution of ODEs and the Columbus' Egg: Three Simple Ideas for Three Difficult Problems , 2010, 1008.4789.
[30] Masaaki Ito,et al. An Extension of Nonlinear Evolution Equations of the K-dV (mK-dV) Type to Higher Orders , 1980 .
[31] F. Iavernaro,et al. Conservative Block‐Boundary Value Methods for the Solution of Polynomial Hamiltonian Systems , 2008 .
[32] L. Brugnano,et al. Hamiltonian Boundary Value Methods ( Energy Preserving Discrete Line Integral Methods ) 1 2 , 2009 .