A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation

In this paper, a new high-order energy-preserving scheme is proposed for the modified Korteweg-de Vries equation. The proposed scheme is constructed by using the Hamiltonian boundary value methods in time, and Fourier pseudospectral method in space. Exploiting this method, we get second-order and fourth-order energy-preserving integrators. The proposed schemes not only have high accuracy, but also exactly conserve the total mass and energy in the discrete level. Finally, single solitary wave and the interaction of two solitary waves are presented to illustrate the effectiveness of the proposed schemes.

[1]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[2]  B. Hulme One-step piecewise polynomial Galerkin methods for initial value problems , 1972 .

[3]  F. Iavernaro,et al.  s‐stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type , 2007 .

[4]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[5]  L. Brugnano,et al.  Line Integral Methods for Conservative Problems , 2015 .

[6]  M. Qin,et al.  MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .

[7]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[8]  F. Iavernaro,et al.  High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems 1 2 , 2009 .

[9]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[10]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .

[11]  Donato Trigiante,et al.  A note on the efficient implementation of Hamiltonian BVMs , 2010, J. Comput. Appl. Math..

[12]  Luis Vega,et al.  Discrete conservation laws and the convergence of long time simulations of the mkdv equation , 2011, J. Comput. Phys..

[13]  Chunxiong Zheng,et al.  Numerical simulation of a modified KdV equation on the whole real axis , 2006, Numerische Mathematik.

[14]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[15]  L. Brugnano,et al.  A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..

[16]  T. Bridges Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  L. Gardner,et al.  Solitary wave solutions of the MKdV− equation , 1995 .

[18]  Donato Trigiante,et al.  Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems , 2009, Commun. Nonlinear Sci. Numer. Simul..

[19]  Hailiang Liu,et al.  A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: Energy conservation and boundary effect , 2013, J. Comput. Phys..

[20]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Luigi Brugnano,et al.  Energy conservation issues in the numerical solution of the semilinear wave equation , 2014, Appl. Math. Comput..

[22]  Xinhua Zhang,et al.  Energy-preserving finite volume element method for the improved Boussinesq equation , 2014, J. Comput. Phys..

[23]  Yulong Xing,et al.  Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation , 2013, Math. Comput..

[24]  F. Smith,et al.  Conservative, high-order numerical schemes for the generalized Korteweg—de Vries equation , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[25]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[26]  M. Wadati,et al.  The Exact Solution of the Modified Korteweg-de Vries Equation , 1972 .

[27]  De-kang Mao,et al.  Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation , 2007, J. Comput. Phys..

[28]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[29]  Donato Trigiante,et al.  Numerical Solution of ODEs and the Columbus' Egg: Three Simple Ideas for Three Difficult Problems , 2010, 1008.4789.

[30]  Masaaki Ito,et al.  An Extension of Nonlinear Evolution Equations of the K-dV (mK-dV) Type to Higher Orders , 1980 .

[31]  F. Iavernaro,et al.  Conservative Block‐Boundary Value Methods for the Solution of Polynomial Hamiltonian Systems , 2008 .

[32]  L. Brugnano,et al.  Hamiltonian Boundary Value Methods ( Energy Preserving Discrete Line Integral Methods ) 1 2 , 2009 .