High Performance Anion Exchange Membrane Electrolysis Using Plasma-Sprayed, Non-Precious-Metal Electrodes

The production of green hydrogen by a cost-effective electrolysis technology is of paramount importance for future energy supply systems. In this regard, proton exchange membrane (PEM) electrolysis...

[1]  K. Ayers,et al.  Perspectives on Low-Temperature Electrolysis and Potential for Renewable Hydrogen at Scale. , 2019, Annual review of chemical and biomolecular engineering.

[2]  M. Bram,et al.  Manufacturing of Large‐Scale Titanium‐Based Porous Transport Layers for Polymer Electrolyte Membrane Electrolysis by Tape Casting , 2019, Advanced Engineering Materials.

[3]  D. Bessarabov,et al.  Hydrogen Production by water Electrolysis with an Ultrathin Anion-exchange membrane (AEM) , 2018, International Journal of Electrochemical Science.

[4]  Dario R. Dekel,et al.  A practical method for measuring the true hydroxide conductivity of anion exchange membranes , 2018 .

[5]  M. Ishida,et al.  Investigations on electrode configurations for anion exchange membrane electrolysis , 2018, Journal of Applied Electrochemistry.

[6]  K. Ayers,et al.  Chemically durable polymer electrolytes for solid-state alkaline water electrolysis , 2018 .

[7]  Dmitri Bessarabov,et al.  Low cost hydrogen production by anion exchange membrane electrolysis: A review , 2018 .

[8]  R. Masel,et al.  The effect of membrane on an alkaline water electrolyzer , 2017 .

[9]  Emiliana Fabbri,et al.  Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. , 2017, Nature materials.

[10]  A. Ansar,et al.  Experimental and Numerical Study of the Effect of Gas-Shrouded Plasma Spraying on Cathode Coating of Alkaline Electrolysis Cells , 2017, Journal of Thermal Spray Technology.

[11]  D. Bessarabov,et al.  Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis , 2017 .

[12]  Thanh Huong Pham,et al.  N-Spirocyclic Quaternary Ammonium Ionenes for Anion-Exchange Membranes. , 2017, Journal of the American Chemical Society.

[13]  Z. Jusys,et al.  Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH. , 2017, Journal of the American Chemical Society.

[14]  P. Strasser,et al.  NiFe‐Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non‐Acidic Electrolytes , 2016 .

[15]  V. Parmon,et al.  Exploring the Influence of the Nickel Oxide Species on the Kinetics of Hydrogen Electrode Reactions in Alkaline Media , 2016, Topics in Catalysis.

[16]  Yushan Yan,et al.  Permethyl Cobaltocenium (Cp*2Co+) as an Ultra-Stable Cation for Polymer Hydroxide-Exchange Membranes , 2015, Scientific Reports.

[17]  K. Kreuer,et al.  Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids. , 2015, ChemSusChem.

[18]  B. Hwang,et al.  A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction , 2015, Nano Research.

[19]  M. McArthur,et al.  Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte , 2014 .

[20]  Zhiyi Lu,et al.  A 3D Nanoporous Ni–Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution , 2014 .

[21]  Pierre Millet,et al.  Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells , 2014 .

[22]  S. Holdcroft,et al.  Hydroxide-Stable Ionenes. , 2014, ACS macro letters.

[23]  H. Vrubel,et al.  Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. , 2014, Physical chemistry chemical physics : PCCP.

[24]  K. Ayers,et al.  Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis , 2014 .

[25]  Maher I. Boulos,et al.  Thermal Spray Fundamentals: From Powder to Part , 2014 .

[26]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[27]  James R. McKone,et al.  Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution , 2013 .

[28]  D. Hall,et al.  The Electrochemistry of Metallic Nickel: Oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution , 2013 .

[29]  H. Abruña,et al.  Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes. , 2012, Journal of the American Chemical Society.

[30]  Steven Holdcroft,et al.  A stable hydroxide-conducting polymer. , 2012, Journal of the American Chemical Society.

[31]  T. Hayashida,et al.  Basic study of alkaline water electrolysis , 2012 .

[32]  Gregory N Tew,et al.  Metal-cation-based anion exchange membranes. , 2012, Journal of the American Chemical Society.

[33]  K. Scott,et al.  CuxCo3−xO4 (0 ≤ x < 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers , 2011 .

[34]  Sung-Chul Yi,et al.  Optimal catalyst layer structure of polymer electrolyte membrane fuel cell , 2011 .

[35]  A. Manthiram,et al.  Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells , 2010 .

[36]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[37]  Jian Colin Sun,et al.  AC impedance technique in PEM fuel cell diagnosis—A review , 2007 .

[38]  C. Lucas,et al.  In situ studies of the oxidation of nickel electrodes in alkaline solution , 2006 .

[39]  R. Frahm,et al.  Corrosion of Mo in KOH: Time Resolved XAFS Investigations , 2001 .