Recursive self preconditioning method based on Schur complement for Toeplitz matrices

In this paper, we propose to solve the Toeplitz linear systems Tnx = b by a recursive-based method. The method is based on repeatedly dividing the original problem into two subproblems that involve the solution of systems containing the Schur complement of the leading principal submatrix of the previous level. The idea is to solve the linear systems Smy = d, where Sm is the Schur complement of T2m (the principal submatrix of Tn), by using a self preconditioned iterative methods. The preconditioners, which are the approximate inverses of Sm, are constructed based on famous Gohberg–Semencul formula. All occurring matrices are represented by proper generating vectors of their displacement rank characterization. We show that, for well conditioned problems, the proposed method is efficient and robust. For ill-conditioned problems, by using some iterative refinement method, the new method would be efficient and robust. Numerical experiments are presented to show the effectiveness of our new method.

[1]  William B. Gragg,et al.  On the application of orthogonal polynomials to the iterative solution of linear systems of equations with indefinite or non-Hermitian matrices , 1987 .

[2]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[3]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[4]  Michael K. Ng,et al.  Approximate inverse-free preconditioners for Toeplitz matrices , 2011, Appl. Math. Comput..

[5]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[6]  James Durbin,et al.  The fitting of time series models , 1960 .

[7]  N. Wiener The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .

[8]  O. Axelsson Iterative solution methods , 1995 .

[9]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[10]  Raymond H. Chan,et al.  Preconditioners for Nondefinite Hermitian Toeplitz Systems , 2001, SIAM J. Matrix Anal. Appl..

[11]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[12]  Michael K. Ng,et al.  Recursive-Based PCG Methods for Toeplitz Systems with Nonnegative Generating Functions , 2002, SIAM J. Sci. Comput..

[13]  Yvan Notay Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..

[14]  F. Hoog A new algorithm for solving Toeplitz systems of equations , 1987 .

[15]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[16]  R. Chan Circulant preconditioners for Hermitian Toeplitz systems , 2011 .

[17]  Raymond H. Chan,et al.  Preconditioners for non-Hermitian Toeplitz systems , 2001, Numer. Linear Algebra Appl..

[18]  D. Noutsos,et al.  New Band Toeplitz Preconditioners for Ill-Conditioned Symmetric Positive Definite Toeplitz Systems , 2001, SIAM J. Matrix Anal. Appl..

[19]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[20]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[21]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  Stefano Serra,et al.  Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .

[24]  Michael K. Ng,et al.  Block Diagonal and Schur Complement Preconditioners for Block-Toeplitz Systems with Small Size Blocks , 2007, SIAM J. Matrix Anal. Appl..

[25]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[26]  Thomas Huckle,et al.  Computations with Gohberg-Semencul-type formulas for Toeplitz matrices , 1998 .

[27]  Wai-Ki Ching Iterative Methods for Queuing and Manufacturing Systems , 2001 .

[28]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .