Recursive self preconditioning method based on Schur complement for Toeplitz matrices
暂无分享,去创建一个
[1] William B. Gragg,et al. On the application of orthogonal polynomials to the iterative solution of linear systems of equations with indefinite or non-Hermitian matrices , 1987 .
[2] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[3] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[4] Michael K. Ng,et al. Approximate inverse-free preconditioners for Toeplitz matrices , 2011, Appl. Math. Comput..
[5] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[6] James Durbin,et al. The fitting of time series models , 1960 .
[7] N. Wiener. The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .
[8] O. Axelsson. Iterative solution methods , 1995 .
[9] B. Anderson,et al. Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .
[10] Raymond H. Chan,et al. Preconditioners for Nondefinite Hermitian Toeplitz Systems , 2001, SIAM J. Matrix Anal. Appl..
[11] David Y. Y. Yun,et al. Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.
[12] Michael K. Ng,et al. Recursive-Based PCG Methods for Toeplitz Systems with Nonnegative Generating Functions , 2002, SIAM J. Sci. Comput..
[13] Yvan Notay. Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..
[14] F. Hoog. A new algorithm for solving Toeplitz systems of equations , 1987 .
[15] W. F. Trench. An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .
[16] R. Chan. Circulant preconditioners for Hermitian Toeplitz systems , 2011 .
[17] Raymond H. Chan,et al. Preconditioners for non-Hermitian Toeplitz systems , 2001, Numer. Linear Algebra Appl..
[18] D. Noutsos,et al. New Band Toeplitz Preconditioners for Ill-Conditioned Symmetric Positive Definite Toeplitz Systems , 2001, SIAM J. Matrix Anal. Appl..
[19] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..
[20] G. Strang,et al. Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .
[21] J. L. Hock,et al. An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .
[22] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[23] Stefano Serra,et al. Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .
[24] Michael K. Ng,et al. Block Diagonal and Schur Complement Preconditioners for Block-Toeplitz Systems with Small Size Blocks , 2007, SIAM J. Matrix Anal. Appl..
[25] W. Gragg,et al. Superfast solution of real positive definite toeplitz systems , 1988 .
[26] Thomas Huckle,et al. Computations with Gohberg-Semencul-type formulas for Toeplitz matrices , 1998 .
[27] Wai-Ki Ching. Iterative Methods for Queuing and Manufacturing Systems , 2001 .
[28] N. Levinson. The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .