Uniqueness of N-way N-mode hierarchical classes models

This paper presents two uniqueness theorems for the family of hierarchical classes models, a collection of order preserving Boolean decomposition models for binary N-way N-mode data. The theorems are compared with uniqueness results for the closely related family of N-way N-mode principal component models. It is concluded that the two-way two-mode PCA and N-way N-mode TuckerN models suffer more from a lack of identifiability than their hierarchical classes analogues, whereas the uniqueness conditions for N-way N-mode PARAFAC/CANDECOMP models are less restrictive than the ones derived for their N-way Nmode hierarchical classes counterparts. r 2003 Elsevier Science (USA). All rights reserved.

[1]  J. Kruskal Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .

[2]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[3]  I. Mechelen,et al.  Individual differences in situation-behavior profiles: A triple typology model , 1998 .

[4]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[5]  J. Berge,et al.  Uniqueness of three-mode factor models with sparse cores: The 3 × 3 × 3 case , 1997 .

[6]  Age K. Smilde,et al.  Constrained three‐mode factor analysis as a tool for parameter estimation with second‐order instrumental data , 1998 .

[7]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[8]  R. Luce A note on Boolean matrix theory , 1952 .

[9]  M. Gara A Set-Theoretical Model of Person Perception. , 1990, Multivariate behavioral research.

[10]  Iven Van Mechelen,et al.  Indclas: A three-way hierarchical classes model , 1999 .

[11]  Iven Van Mechelen,et al.  The conjunctive model of hierarchical classes , 1995 .

[12]  R. Bro,et al.  A fast non‐negativity‐constrained least squares algorithm , 1997 .

[13]  P. Boeck,et al.  Hierarchical classes: Model and data analysis , 1988 .

[14]  D. E. Rutherford Inverses of Boolean matrices , 1963 .

[15]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[16]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[17]  N. Sidiropoulos,et al.  Least squares algorithms under unimodality and non‐negativity constraints , 1998 .

[18]  Mathieu Koppen,et al.  Introduction to knowledge spaces: How to build, test, and search them , 1990 .

[19]  Iven Van Mechelen,et al.  Tucker3 hierarchical classes analysis , 2003 .

[20]  I. Vanmechelen,et al.  A Latent Criteria Model for Choice Data , 1994 .

[21]  I. Mechelen,et al.  Implicit Taxonomy in Psychiatric Diagnosis: A Case Study , 1989 .

[22]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.