Negative Probabilities and Contextuality

There has been a growing interest, both in physics and psychology, in understanding contextuality in experimentally observed quantities. Different approaches have been proposed to deal with contextual systems, and a promising one is contextuality-by-default, put forth by Dzhafarov and Kujala. The goal of this paper is to present a tutorial on a different approach: negative probabilities. We do so by presenting the overall theory of negative probabilities in a way that is consistent with contextuality-by-default and by examining with this theory some simple examples where contextuality appears, both in physics and psychology.

[1]  Jean-Pierre Vigier,et al.  A review of extended probabilities , 1986 .

[2]  Diederik Aerts,et al.  Quantum Structure in Cognition , 2008, 0805.3850.

[3]  T. Fritz,et al.  A Combinatorial Approach to Nonlocality and Contextuality , 2012, Communications in Mathematical Physics.

[4]  Ehtibar N. Dzhafarov,et al.  Contextuality is about identity of random variables , 2014, 1405.2116.

[5]  J. Acacio de Barros,et al.  Quantum-like model of behavioral response computation using neural oscillators , 2012, Biosyst..

[6]  J. S. Wood,et al.  Statistical interpretation of p-adic-valued quantum field theory , 1993 .

[7]  Gary Oas,et al.  A Survey of Physical Principles Attempting to Define Quantum Mechanics , 2015, 1506.05515.

[8]  Anthony J Short,et al.  Simulating all nonsignaling correlations via classical or quantum theory with negative probabilities. , 2013, Physical review letters.

[9]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[10]  Gary Oas,et al.  Negative probabilities and counter-factual reasoning in quantum cognition , 2014, 1404.3921.

[11]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[12]  J. Kujala Minimal Distance to Approximating Noncontextual System as a Measure of Contextuality , 2015, Foundations of Physics.

[13]  Andrei Khrennikov,et al.  Interpretations of Probability , 1999 .

[14]  Samson Abramsky,et al.  Logical Bell Inequalities , 2012, ArXiv.

[15]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[16]  A. Cabello,et al.  Bell-Kochen-Specker theorem: A proof with 18 vectors , 1996, quant-ph/9706009.

[17]  Richard Phillips Feynman,et al.  Mainly mechanics, radiation, and heat , 1963 .

[18]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[19]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[20]  Jose Acacio de Barros,et al.  Decision Making for Inconsistent Expert Judgments Using Negative Probabilities , 2013, QI.

[21]  A. Messiah Quantum Mechanics, Volume II , 1981 .

[22]  M. P. Soler,et al.  Characterization of hilbert spaces by orthomodular spaces , 1995 .

[23]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision , 2012 .

[24]  Ehtibar N. Dzhafarov,et al.  Measuring Observable Quantum Contextuality , 2015, QI.

[25]  A. Tversky,et al.  The Disjunction Effect in Choice under Uncertainty , 1992 .

[26]  Peter beim Graben,et al.  Quantum cognition and bounded rationality , 2015, Synthese.

[27]  Samson Abramsky,et al.  An Operational Interpretation of Negative Probabilities and No-Signalling Models , 2014, Horizons of the Mind.

[28]  David J. Foulis,et al.  A Half-Century of Quantum Logic What Have We Learned? , 1999 .

[29]  Richard M. Shiffrin,et al.  Context effects produced by question orders reveal quantum nature of human judgments , 2014, Proceedings of the National Academy of Sciences.

[30]  Ehtibar N. Dzhafarov,et al.  All-Possible-Couplings Approach to Measuring Probabilistic Context , 2012, PloS one.

[31]  J. Schreiber Foundations Of Statistics , 2016 .

[32]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[33]  Patrick Suppes,et al.  When are probabilistic explanations possible? , 2005, Synthese.

[34]  C. cohen-tannoudji,et al.  Quantum Mechanics: Volume II , 1978 .

[35]  Ehtibar N. Dzhafarov,et al.  Contextuality in Three Types of Quantum-Mechanical Systems , 2014, Foundations of Physics.

[36]  Samson Abramsky,et al.  The sheaf-theoretic structure of non-locality and contextuality , 2011, 1102.0264.

[37]  Patrick Suppes,et al.  When are Probabilistic Explanations Possible , 1981 .

[38]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure , 2010 .

[39]  Ehtibar N. Dzhafarov,et al.  Unifying Two Methods of Measuring Quantum Contextuality , 2014 .

[40]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[41]  A. Khrennikov,et al.  Quantum Social Science , 2013 .

[42]  R. Feynman Simulating physics with computers , 1999 .

[43]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[44]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[45]  Paul Adrien Maurice Dirac,et al.  Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  V. S. Varadarajan,et al.  Quantum theory and geometry: sixty years after von Neumann , 1993 .

[47]  Ru Zhang,et al.  Is there contextuality in behavioural and social systems? , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  A. Cabello Quantum physics: Correlations without parts , 2011, Nature.

[49]  Pawel Blasiak Classical systems can be contextual too: Analogue of the Mermin-Peres square , 2015 .

[50]  E. Specker,et al.  The Logic of Propositions Which are not Simultaneously Decidable , 1975 .

[51]  R. N. Schouten,et al.  Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km , 2015, 1508.05949.

[52]  Gerald Holton,et al.  The Roots of Complementarity. , 1970 .

[53]  Louis Narens,et al.  Probabilistic Lattices - With Applications to Psychology , 2014, Probabilistic Lattices.

[54]  Jan-AAke Larsson,et al.  Contextuality in Three Types of Quantum-Mechanical Systems , 2014, 1411.2244.

[55]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[56]  Patrick Suppes,et al.  Negative probabilities and Counterfactual Reasoning on the double-slit Experiment , 2014, 1412.4888.

[57]  Nick Herbert FLASH—A superluminal communicator based upon a new kind of quantum measurement , 1982 .

[58]  Ehtibar N. Dzhafarov,et al.  Context-Content Systems of Random Variables: The Contextuality-by-Default Theory , 2015, 1511.03516.

[59]  J. Acacio de Barros Beyond the quantum formalism: consequences of a neural-oscillator model to quantum cognition , 2013, ArXiv.

[60]  Ehtibar N. Dzhafarov,et al.  A Qualified Kolmogorovian Account of Probabilistic Contextuality , 2013, QI.

[61]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[62]  A. Winter,et al.  Graph-theoretic approach to quantum correlations. , 2014, Physical review letters.

[63]  Augustus De Morgan On the study and difficulties of mathematics , 1898 .

[64]  Gary Oas,et al.  Some Examples of Contextuality in Physics: Implications to Quantum Cognition , 2015, 1512.00033.

[65]  A. Yu. Khrennikov p-Adic probability theory and its applications. The principle of statistical stabilization of frequencies , 1993 .

[66]  Emmanuel Haven,et al.  Quantum mechanics and violations of the sure-thing principle: The use of probability interference and other concepts , 2009 .

[67]  J. Acacio de Barros,et al.  Exploring non-signalling polytopes with negative probability , 2014, 1404.3831.

[68]  Jan-Åke Larsson,et al.  Necessary and Sufficient Conditions for an Extended Noncontextuality in a Broad Class of Quantum Mechanical Systems. , 2014, Physical review letters.

[69]  Ehtibar N. Dzhafarov,et al.  Probabilistic Contextuality in EPR/Bohm-type Systems with Signaling Allowed , 2014, 1406.0243.

[70]  J. A. Barros,et al.  Quantum Cognition, Neural Oscillators, and Negative Probabilities , 2017 .

[71]  A. Tversky,et al.  Thinking through uncertainty: Nonconsequential reasoning and choice , 1992, Cognitive Psychology.

[72]  Convolution quotients of nonnegative functions , 1983 .

[73]  D. Dieks Communication by EPR devices , 1982 .

[74]  J. Acacio de Barros,et al.  Joint probabilities and quantum cognition , 2012, 1206.6706.

[75]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[76]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.