Model Reduction by Proper Orthogonal Decomposition Coupled With Centroidal Voronoi Tessellations (Keynote)
暂无分享,去创建一个
[1] J. Lumley. Stochastic tools in turbulence , 1970 .
[2] Qiang Du,et al. Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..
[3] Sivaguru S. Ravindran,et al. Proper Orthogonal Decomposition in Optimal Control of Fluids , 1999 .
[4] L. Sirovich. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .
[5] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[6] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[7] E. Sachs,et al. Trust-region proper orthogonal decomposition for flow control , 2000 .
[8] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[9] Stefan Volkwein. Optimal Control of a Phase‐Field Model Using Proper Orthogonal Decomposition , 2001 .
[10] B. B. King,et al. Sensor location in feedback control of partial differential equation systems , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).
[11] G. Berkooz,et al. Galerkin projections and the proper orthogonal decomposition for equivariant equations , 1993 .
[12] I. Kevrekidis,et al. Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .
[13] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[14] Qiang Du,et al. Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..
[15] Jens Nørkær Sørensen,et al. Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..
[16] K. Kunisch,et al. Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .
[17] S. SIAMJ.,et al. SYMMETRY AND THE KARHUNEN–LOÈVE ANALYSIS , 2007 .
[18] Nadine Aubry,et al. Preserving Symmetries in the Proper Orthogonal Decomposition , 1993, SIAM J. Sci. Comput..
[19] Stefan Volkwein,et al. Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.
[20] P. Holmes,et al. Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .
[21] H. M. Park,et al. Low dimensional modeling of flow reactors , 1996 .
[22] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .
[23] S. S. Ravindran,et al. Reduced-Order Adaptive Controllers for Fluid Flows Using POD , 2000, J. Sci. Comput..
[24] Jonathan C. Mattingly,et al. Low-dimensional models of coherent structures in turbulence , 1997 .
[25] Lawrence Sirovich,et al. Low-dimensional dynamics for the complex Ginzburg-Landau equation , 1990 .
[26] M. Gunzburger,et al. Meshfree, probabilistic determination of point sets and support regions for meshless computing , 2002 .
[27] P. Holmes,et al. The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .
[28] Dieter Armbruster,et al. Timely Communication: Symmetry and the Karhunen-Loève Analysis , 1997, SIAM J. Sci. Comput..