Model Reduction by Proper Orthogonal Decomposition Coupled With Centroidal Voronoi Tessellations (Keynote)

Proper orthogonal decompositions (POD) have been used to define reduced bases for low-dimensional approximations of complex systems, including turbulent flows. Centroidal Voronoi tessellations (CVT) have been used in a variety of data compression and clustering settings. We review both strategies in the context of model reduction for complex systems and propose combining the ideas of CVT and POD into a hybrid method that inherets favorable characteristics from both its parents. The usefulness of such an approach and various practical implementation strategies are discussed.

[1]  J. Lumley Stochastic tools in turbulence , 1970 .

[2]  Qiang Du,et al.  Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..

[3]  Sivaguru S. Ravindran,et al.  Proper Orthogonal Decomposition in Optimal Control of Fluids , 1999 .

[4]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[5]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[6]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[7]  E. Sachs,et al.  Trust-region proper orthogonal decomposition for flow control , 2000 .

[8]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[9]  Stefan Volkwein Optimal Control of a Phase‐Field Model Using Proper Orthogonal Decomposition , 2001 .

[10]  B. B. King,et al.  Sensor location in feedback control of partial differential equation systems , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[11]  G. Berkooz,et al.  Galerkin projections and the proper orthogonal decomposition for equivariant equations , 1993 .

[12]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[13]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[14]  Qiang Du,et al.  Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..

[15]  Jens Nørkær Sørensen,et al.  Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..

[16]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[17]  S. SIAMJ.,et al.  SYMMETRY AND THE KARHUNEN–LOÈVE ANALYSIS , 2007 .

[18]  Nadine Aubry,et al.  Preserving Symmetries in the Proper Orthogonal Decomposition , 1993, SIAM J. Sci. Comput..

[19]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[20]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[21]  H. M. Park,et al.  Low dimensional modeling of flow reactors , 1996 .

[22]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[23]  S. S. Ravindran,et al.  Reduced-Order Adaptive Controllers for Fluid Flows Using POD , 2000, J. Sci. Comput..

[24]  Jonathan C. Mattingly,et al.  Low-dimensional models of coherent structures in turbulence , 1997 .

[25]  Lawrence Sirovich,et al.  Low-dimensional dynamics for the complex Ginzburg-Landau equation , 1990 .

[26]  M. Gunzburger,et al.  Meshfree, probabilistic determination of point sets and support regions for meshless computing , 2002 .

[27]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[28]  Dieter Armbruster,et al.  Timely Communication: Symmetry and the Karhunen-Loève Analysis , 1997, SIAM J. Sci. Comput..