Self-Optimal Clustering Technique Using Optimized Threshold Function

This paper presents a self-optimal clustering (SOC) technique which is an advanced version of improved mountain clustering (IMC) technique. The proposed clustering technique is equipped with major changes and modifications in its previous versions of algorithm. SOC is compared with some of the widely used clustering techniques such as K-means, fuzzy C-means, Expectation and Maximization, and K-medoid. Also, the comparison of the proposed technique is shown with IMC and its last updated version. The quantitative and qualitative performances of all these well-known clustering techniques are presented and compared with the aid of case studies and examples on various benchmarked validation indices. SOC has been evaluated via cluster compactness within itself and separation with other clusters. The optimizing factor in the threshold function is computed via interpolation and found to be effective in forming better quality clusters as verified by visual assessment and various standard validation indices like the global silhouette index, partition index, separation index, and Dunn index.

[1]  R. Yager,et al.  Approximate Clustering Via the Mountain Method , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[2]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[3]  Sanjit K. Mitra,et al.  Unsupervised low-frequency driven segmentation of color images , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[4]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[5]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[6]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[7]  James C. Bezdek,et al.  Validity-guided (re)clustering with applications to image segmentation , 1996, IEEE Trans. Fuzzy Syst..

[8]  Dorin Comaniciu Image segmentation using clustering with saddle point detection , 2002, Proceedings. International Conference on Image Processing.

[9]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[10]  Manuela M. Veloso,et al.  Fast and inexpensive color image segmentation for interactive robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[11]  Nishchal K. Verma,et al.  Color Segmentation Using Improved Mountain Clustering Technique Version-2 , 2011, 2011 Eighth International Conference on Information Technology: New Generations.

[12]  W. Rudin Principles of mathematical analysis , 1964 .

[13]  Yee-Hong Yang,et al.  Multiresolution Color Image Segmentation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[15]  Dirk Hofmann,et al.  On a Generalization of the Stone–Weierstrass Theorem , 2002, Appl. Categorical Struct..

[16]  Dorin Comaniciu,et al.  Robust analysis of feature spaces: color image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Daniel P. Huttenlocher,et al.  Image segmentation using local variation , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[18]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[19]  Padhraic Smyth,et al.  Probabilistic Clustering using Hierarchical Models , 1999 .

[20]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[21]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[23]  Jianqing Liu,et al.  Multiresolution Colour Image Segmentation , 1993 .

[24]  Francisco Azuaje,et al.  Cluster validation techniques for genome expression data , 2003, Signal Process..

[25]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[26]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[27]  Michael Werman,et al.  Self-Organization in Vision: Stochastic Clustering for Image Segmentation, Perceptual Grouping, and Image Database Organization , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Nishchal K. Verma,et al.  Color Segmentation via Improved Mountain Clustering Technique , 2007, Int. J. Image Graph..

[29]  Ferenc Szeifert,et al.  Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[30]  Lagrange’s Interpolation Formula: Representation of Numerical Data by a Polynomial curve , 2016 .

[31]  M. Razaz A fuzzy C-means clustering placement algorithm , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[32]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Yan Cui,et al.  Medical Image Segmentation Using Improved Mountain Clustering Approach , 2009, 2009 Sixth International Conference on Information Technology: New Generations.

[34]  Sanjit K. Mitra,et al.  Color segmentation through independent anisotropic diffusion of complex chromaticity and lightness , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[35]  Serge J. Belongie,et al.  Normalized cuts in 3-D for spinal MRI segmentation , 2004, IEEE Transactions on Medical Imaging.