Giant multiporphyrin arrays as artificial light-harvesting antennas.

Synthetic giant multiporphyrin arrays with well-defined architectures are reviewed in terms of artificial light-harvesting materials. Meso,meso-linked porphyrin arrays and multiporphyrin dendrimers have successfully mimicked the light-harvesting function of bacterial photosynthetic systems. We have also developed novel multiporphyrin-modified metal nanoclusters where porphyrins employed as a light-harvesting unit are well organized onto metal nanoclusters by self-assembly processes. Multiporphyrin-modified metal nanoclusters have been applied to photocatalyses and photovoltaic cells. In particular, they have been assembled with fullerenes step-by-step to make large, uniform clusters on nanostructured semiconductor electrodes, which exhibit a high power-conversion efficiency close to 1%. These systems provide valuable information on the design of porphyrin molecular assemblies that can be tailored to construct molecular photonic devices as well as artificial photosynthetic systems.