Linear Approximation of Semi-algebraic Spatial Databases Using Transitive Closure Logic, in Arbitrary Dimension

We consider n-dimensional semi-algebraic spatial databases. We compute in first-order logic extended with a transitive closure operator, a linear spatial database which characterizes the semi-algebraic spatial database up to a homeomorphism. In this way, we generalize our earlier results to semi-algebraic spatial databases in arbitrary dimensions, our earlier results being true for only two dimensions.Consequently, we can prove that first-order logic with a transitive closure operator extended with stop conditions, can express all Boolean topological queries on semi-algebraic spatial databases of arbitrary dimension.

[1]  Michael Benedikt,et al.  Safe Constraint Queries , 2000, SIAM J. Comput..

[2]  Michael Benedikt,et al.  Reachability and connectivity queries in constraint databases , 2003, J. Comput. Syst. Sci..

[3]  E. Rannou,et al.  The Complexity of Stratification Computation , 1998, Discret. Comput. Geom..

[4]  塩田 昌弘,et al.  Geometry of subanalytic and semialgebraic sets , 1997 .

[5]  Bart Kuijpers,et al.  Linear approximation of planar spatial databases using transitive-closure logic , 2000, PODS '00.

[6]  Bart Kuijpers,et al.  Expressing Topological Connectivity of Spatial Databases , 1999, DBPL.

[7]  Marc Gyssens,et al.  An expressive language for linear spatial database queries , 1998, J. Comput. Syst. Sci..

[8]  Jan Van den Bussche,et al.  Complete Geometric Query Languages , 1999, J. Comput. Syst. Sci..

[9]  Gabriel M. Kuper,et al.  Tractable Recursion over Geometric Data , 1997, CP.

[10]  Stephan Kreutzer Query Languages for Constraint Databases: First-Order Logic, Fixed-Points, and Convex Hulls , 2001, ICDT.

[11]  Jianwen Su,et al.  Finitely Representable Databases , 1997, J. Comput. Syst. Sci..

[12]  Stéphane Grumbach,et al.  Constraint Databases , 1999, JFPLC.

[13]  David Harel,et al.  Computable Queries for Relational Data Bases , 1980, J. Comput. Syst. Sci..

[14]  Marc Gyssens,et al.  On Query Languages for Linear Queries Definable with Polynomial Constraints , 1996, CP.

[15]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[16]  Stephan Kreutzer Fixed-point query languages for linear constraint databases , 2000, PODS '00.

[17]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[18]  Jianwen Su,et al.  Queries with Arithmetical Constraints , 1997, Theor. Comput. Sci..

[19]  Jan Van den Bussche,et al.  Complete geometrical query languages , 1997, PODS 1997.

[20]  Gabriel M. Kuper,et al.  Constraint Query Languages , 1995, J. Comput. Syst. Sci..

[21]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .