High temperature electrical resistance of substrate-supported single walled carbon nanotubes

We report the electrical characteristics of substrate-supported metallic single walled carbon nanotubes at temperatures up to 573 K over a range of bias voltages (Vb) for zero gate voltage in air under atmospheric pressure. Our results show a monotonic increase in resistance with temperature, with an I-Vb characteristic that is linear at high temperature but nonlinear at low temperature. A theory for electrical resistance is applied to the data which shows that the transition to Ohmic behavior at high temperature is the result of optical phonon absorption rather than acoustic phonon scattering.

[1]  Austin D. Swafford,et al.  Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes , 2008, Proceedings of the National Academy of Sciences.

[2]  K. Goodson,et al.  3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon , 2006 .

[3]  E. Pop,et al.  Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates , 2006, cond-mat/0609075.

[4]  Vera Sazonova,et al.  A tunable carbon nanotube resonator , 2006 .

[5]  J. Leburton,et al.  Joule heating induced negative differential resistance in freestanding metallic carbon nanotubes , 2006, cond-mat/0603831.

[6]  H. Dai,et al.  Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes. , 2006, Journal of Physical Chemistry B.

[7]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[8]  Young-Min Choi,et al.  Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors , 2005 .

[9]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[10]  J. Leburton,et al.  Nonlinear transport and heat dissipation in metallic carbon nanotubes. , 2005, Physical review letters.

[11]  H. Dai,et al.  Negative differential conductance and hot phonons in suspended nanotube molecular wires. , 2005, Physical review letters.

[12]  P. McEuen,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[13]  W. Hoenlein,et al.  Carbon nanotube applications in microelectronics , 2004, IEEE Transactions on Components and Packaging Technologies.

[14]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[15]  Satoshi Watanabe,et al.  Universal features of quantized thermal conductance of carbon nanotubes. , 2003, Physical review letters.

[16]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[17]  H. Dai,et al.  Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts , 2003, cond-mat/0309044.

[18]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[19]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[20]  Qian Wang,et al.  Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems , 2002 .

[21]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[22]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[23]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[24]  E. J. Mele,et al.  Temperature-dependent resistivity of single-wall carbon nanotubes , 1997, cond-mat/9704117.

[25]  Richard E. Smalley,et al.  METALLIC RESISTIVITY IN CRYSTALLINE ROPES OF SINGLE-WALL CARBON NANOTUBES , 1997 .

[26]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[27]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..