Image processing and machine learning for fully automated probabilistic evaluation of medical images

[1]  Matjaz Kukar,et al.  Improving Probabilistic Interpretation of Medical Diagnoses with Multi-resolution Image Parameterization: A Case Study , 2009, AIME.

[2]  Richard L. Van Metter,et al.  Handbook of Medical Imaging , 2009 .

[3]  J. Jiang,et al.  Computational Intelligence in Medical Imaging: Techniques and Applications , 2009 .

[4]  Igor Kononenko,et al.  Multiresolution Image Parametrization for Improving Texture Classification , 2008, EURASIP J. Adv. Signal Process..

[5]  Samuel J. Davey,et al.  A Comparison of Detection Performance for Several Track-before-Detect Algorithms , 2008, 2008 11th International Conference on Information Fusion.

[6]  Matjaz Kukar,et al.  Multi-resolution Image Parametrization in Stepwise Diagnostics of Coronary Artery Disease , 2007, AIME.

[7]  Igor Kononenko,et al.  Machine Learning and Data Mining: Introduction to Principles and Algorithms , 2007 .

[8]  Matjaz Bevk,et al.  Towards symbolic mining of images with association rules: Preliminary results on textures , 2006, Intell. Data Anal..

[9]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[10]  Yonghong Peng,et al.  Knowledge-discovery incorporated evolutionary search for microcalcification detection in breast cancer diagnosis , 2006, Artif. Intell. Medicine.

[11]  Christos D. Katsis,et al.  A novel method for automated EMG decomposition and MUAP classification , 2006, Artif. Intell. Medicine.

[12]  J. Heo,et al.  Artificial neural network modeling of stress single-photon emission computed tomographic imaging for detecting extensive coronary artery disease. , 2005, The American journal of cardiology.

[13]  D. Berman,et al.  Automated quantification of myocardial perfusion SPECT using simplified normal limits , 2004, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[14]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[15]  Blaz Zupan,et al.  Orange: From Experimental Machine Learning to Interactive Data Mining , 2004, PKDD.

[16]  Marko Robnik-Sikonja,et al.  Theoretical and Empirical Analysis of ReliefF and RReliefF , 2003, Machine Learning.

[17]  Mattias Ohlsson,et al.  WeAidU - a decision support system for myocardial perfusion images using artificial neural networks , 2004, Artif. Intell. Medicine.

[18]  Nada Lavrac,et al.  Active subgroup mining: a case study in coronary heart disease risk group detection , 2003, Artif. Intell. Medicine.

[19]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[20]  Mark S. Nixon,et al.  Feature Extraction and Image Processing , 2002 .

[21]  Lukasz A. Kurgan,et al.  Knowledge discovery approach to automated cardiac SPECT diagnosis , 2001, Artif. Intell. Medicine.

[22]  C D Cooke,et al.  Diagnostic performance of an expert system for the interpretation of myocardial perfusion SPECT studies. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[23]  Igor Kononenko,et al.  Machine learning for medical diagnosis: history, state of the art and perspective , 2001, Artif. Intell. Medicine.

[24]  Isaac N. Bankman,et al.  Handbook of medical imaging , 2000 .

[25]  Ian Witten,et al.  Data Mining , 2000 .

[26]  Bert A. Mobley,et al.  Predictions of coronary artery stenosis by artificial neural network , 2000, Artif. Intell. Medicine.

[27]  Nicolai Petkov,et al.  Comparison of texture features based on Gabor filters , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[28]  Matjaz Kukar,et al.  Machine Learning in Stepwise Diagnostic Process , 1999, AIMDM.

[29]  Igor Kononenko,et al.  Analysing and improving the diagnosis of ischaemic heart disease with machine learning , 1999, Artif. Intell. Medicine.

[30]  L Edenbrandt,et al.  Scintigraphic diagnosis of coronary artery disease: myocardial bull's-eye images contain the important information. , 1998, Clinical physiology.

[31]  Jihoon Yang,et al.  Feature Subset Selection Using a Genetic Algorithm , 1998, IEEE Intell. Syst..

[32]  Igor Kononenko,et al.  An application of machine learning in the diagnosis of ischaemic heart disease , 1997, Proceedings of Computer Based Medical Systems.

[33]  Jerzy Stefanowski,et al.  Feature subset selection for classification of histological images , 1997, Artif. Intell. Medicine.

[34]  Mehran Sahami,et al.  Learning Limited Dependence Bayesian Classifiers , 1996, KDD.

[35]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[36]  M. Olona-Cabases,et al.  The probability of a correct diagnosis , 1994 .

[37]  J. Candell‐Riera,et al.  Nuclear Cardiology in Everyday Practice , 1994, Developments in Cardiovascular Medicine.

[38]  Igor Kononenko,et al.  Inductive and Bayesian learning in medical diagnosis , 1993, Appl. Artif. Intell..

[39]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[40]  J. A. López del Val,et al.  Principal Components Analysis , 2018, Applied Univariate, Bivariate, and Multivariate Statistics Using Python.

[41]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[42]  George H. Dunteman,et al.  Principal Components Analysis , 1990 .

[43]  K. Laws Textured Image Segmentation , 1980 .