COPA: cooperative power allocation for interfering wireless networks

As 802.11 wireless networks proliferate, interference becomes increasingly severe, particularly in dense, urban environments. These networks are usually operated by different users (e.g., tenants in apartments). In this paper, we develop techniques for mitigating interference between such loosely cooperating 802.11 MIMO APs and clients, which do not share a high-speed wired backplane or central controller. We propose CoOperative Power Allocation (COPA), an approach to concurrent wireless medium access that combines fine-grained, per-subcarrier power allocation, nulling, and multi-stream transmission to claim capacity that status-quo approaches cannot. Jointly turning these knobs allows COPA to allocate subcarriers to senders partially, rather than all-or-nothing, and to embrace a measure of interference when doing so increases capacity.

[1]  Lixin Shi,et al.  Fine-grained channel access in wireless LAN , 2010, SIGCOMM '10.

[2]  Jörg Widmer,et al.  Sub-carrier Switch Off in OFDM-based wireless local area networks , 2013, 2013 IEEE International Conference on Sensing, Communications and Networking (SECON).

[3]  Sampath Rangarajan,et al.  MIDAS: Empowering 802.11ac Networks with Multiple-Input Distributed Antenna Systems , 2014, CoNEXT.

[4]  Dina Katabi,et al.  Frequency-aware rate adaptation and MAC protocols , 2009, MobiCom '09.

[5]  Juan Zhou,et al.  Geosphere: consistently turning MIMO capacity into throughput , 2014, SIGCOMM.

[6]  Srinivasan Seshan,et al.  Clearing the RF smog: making 802.11n robust to cross-technology interference , 2011, SIGCOMM.

[7]  Ramachandran Ramjee,et al.  WiFi-NC : WiFi Over Narrow Channels , 2012, NSDI.

[8]  Changho Suh,et al.  Interference Alignment for Cellular Networks , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[9]  Wei Wang,et al.  SAM: enabling practical spatial multiple access in wireless LAN , 2009, MobiCom '09.

[10]  Srinivasan Seshan,et al.  DIRC: increasing indoor wireless capacity using directional antennas , 2009, SIGCOMM '09.

[11]  James Gross,et al.  Power loading: Candidate for future WLANs? , 2012, 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM).

[12]  Yanghee Choi,et al.  REACT: Rate Adaptation using Coherence Time in 802.11 WLANs , 2011, Comput. Commun..

[13]  Wei Yu,et al.  Iterative water-filling for Gaussian vector multiple-access channels , 2001, IEEE Transactions on Information Theory.

[14]  Dina Katabi,et al.  SourceSync: a distributed wireless architecture for exploiting sender diversity , 2010, SIGCOMM '10.

[15]  Syed Ali Jafar,et al.  Approaching the Capacity of Wireless Networks through Distributed Interference Alignment , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[16]  Srinivasan Seshan,et al.  Clearing the RF smog: making 802.11n robust to cross-technology interference , 2011, SIGCOMM.

[17]  Kate Ching-Ju Lin,et al.  Random access heterogeneous MIMO networks , 2011, SIGCOMM.

[18]  ZhangYongguang,et al.  Fine-grained channel access in wireless LAN , 2010 .

[19]  Srinivasan Seshan,et al.  Pushing the envelope of indoor wireless spatial reuse using directional access points and clients , 2010, MobiCom '10.

[20]  Antonia Maria Tulino,et al.  Optimum power allocation for parallel Gaussian channels with arbitrary input distributions , 2006, IEEE Transactions on Information Theory.

[21]  Swarun Kumar,et al.  Bringing cross-layer MIMO to today's wireless LANs , 2013, SIGCOMM.

[22]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[23]  David Wetherall,et al.  Predictable 802.11 packet delivery from wireless channel measurements , 2010, SIGCOMM '10.

[24]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[25]  Paramvir Bahl,et al.  A case for adapting channel width in wireless networks , 2008, SIGCOMM '08.

[26]  Jeffrey G. Andrews,et al.  Analytical Evaluation of Fractional Frequency Reuse for OFDMA Cellular Networks , 2011, IEEE Transactions on Wireless Communications.

[27]  Swarun Kumar,et al.  JMB: scaling wireless capacity with user demands , 2012, SIGCOMM '12.

[28]  Qing Yang,et al.  BigStation: enabling scalable real-time signal processingin large mu-mimo systems , 2013, SIGCOMM.

[29]  References , 1971 .

[30]  Dina Katabi,et al.  Interference alignment and cancellation , 2009, SIGCOMM '09.

[31]  D. Katabi,et al.  JMB: scaling wireless capacity with user demands , 2012, CCRV.

[32]  Nageen Himayat,et al.  Interference management for 4G cellular standards [WIMAX/LTE UPDATE] , 2010, IEEE Communications Magazine.