SIRT 1 deacetylase protects against neurodegeneration in models for Alzheimer ’ s disease and amyotrophic lateral sclerosis

Dohoon Kim, Minh Dang Nguyen, Matthew M Dobbin, Andre Fischer, Farahnaz Sananbenesi, Joseph T Rodgers, Ivana Delalle, Joseph A Baur, Guangchao Sui, Sean M Armour, Pere Puigserver, David A Sinclair* and Li-Huei Tsai* Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA, Department of Pathology, Harvard Medical School, Boston, MA, USA, Dana Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA, Department of Cell Biology, Johns Hopkins University School of Medicine, Boston, MA, USA and Department of Pathology and Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA

[1]  Jiandie D. Lin,et al.  Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators , 2006, Cell.

[2]  L. Tsai,et al.  p25/Cyclin-Dependent Kinase 5 Induces Production and Intraneuronal Accumulation of Amyloid β In Vivo , 2006, The Journal of Neuroscience.

[3]  Jun Wang,et al.  Neuronal SIRT1 Activation as a Novel Mechanism Underlying the Prevention of Alzheimer Disease Amyloid Neuropathology by Calorie Restriction* , 2006, Journal of Biological Chemistry.

[4]  B. Tang SIRT1, neuronal cell survival and the insulin/IGF-1 aging paradox , 2006, Neurobiology of Aging.

[5]  Petti T. Pang,et al.  Opposing Roles of Transient and Prolonged Expression of p25 in Synaptic Plasticity and Hippocampus-Dependent Memory , 2005, Neuron.

[6]  Chao Cheng,et al.  Sir2 Blocks Extreme Life-Span Extension , 2005, Cell.

[7]  Peter Davies,et al.  Resveratrol Promotes Clearance of Alzheimer's Disease Amyloid-β Peptides* , 2005, Journal of Biological Chemistry.

[8]  W. Gu,et al.  A local mechanism mediates NAD-dependent protection of axon degeneration , 2005, The Journal of cell biology.

[9]  S. Nemoto,et al.  SIRT1 Functionally Interacts with the Metabolic Regulator and Transcriptional Coactivator PGC-1α* , 2005, Journal of Biological Chemistry.

[10]  L. Guarente,et al.  Calorie restriction, SIRT1 and metabolism: understanding longevity , 2005, Nature Reviews Molecular Cell Biology.

[11]  Christian Néri,et al.  Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons , 2005, Nature Genetics.

[12]  Frederick W. Alt,et al.  DNA Repair, Genome Stability, and Aging , 2005, Cell.

[13]  L. Mucke,et al.  SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. , 2005, The Journal of biological chemistry.

[14]  Steven P Gygi,et al.  Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. , 2005, Nature.

[15]  D. Selkoe,et al.  Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases , 2004, Nature Cell Biology.

[16]  John Q Trojanowski,et al.  Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs , 2004, Nature Medicine.

[17]  J. Milbrandt,et al.  Increased Nuclear NAD Biosynthesis and SIRT1 Activation Prevent Axonal Degeneration , 2004, Science.

[18]  Dudley Lamming,et al.  MicroReview: Small molecules that regulate lifespan: evidence for xenohormesis , 2004, Molecular microbiology.

[19]  Myriam Gorospe,et al.  Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacetylase , 2004, Science.

[20]  S. Lipton,et al.  Molecular pathways to neurodegeneration , 2004, Nature Medicine.

[21]  L. Bruijn,et al.  Unraveling the mechanisms involved in motor neuron degeneration in ALS. , 2004, Annual review of neuroscience.

[22]  Sang Ki Park,et al.  A NUDEL-dependent mechanism of neurofilament assembly regulates the integrity of CNS neurons , 2004, Nature Cell Biology.

[23]  L. Tsai,et al.  A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease , 2004, Current Opinion in Neurobiology.

[24]  Steven P. Gygi,et al.  Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase , 2004, Science.

[25]  Hidde Ploegh,et al.  Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. , 2004, Molecular cell.

[26]  David S. Park,et al.  Emerging Pathogenic Role for Cyclin Dependent Kinases in Neurodegeneration , 2004, Cell cycle.

[27]  J. Radulovic,et al.  Distinct Roles of Hippocampal De Novo Protein Synthesis and Actin Rearrangement in Extinction of Contextual Fear , 2004, The Journal of Neuroscience.

[28]  Delin Chen,et al.  Mammalian SIRT1 Represses Forkhead Transcription Factors , 2004, Cell.

[29]  Ana Rute Neves,et al.  Yeast Life-Span Extension by Calorie Restriction Is Independent of NAD Fluctuation , 2003, Science.

[30]  Li-Huei Tsai,et al.  Aberrant Cdk5 Activation by p25 Triggers Pathological Events Leading to Neurodegeneration and Neurofibrillary Tangles , 2003, Neuron.

[31]  Phuong Chung,et al.  Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan , 2003, Nature.

[32]  A. Delacourte,et al.  Mitotic-like Tau Phosphorylation by p25-Cdk5 Kinase Complex* , 2003, Journal of Biological Chemistry.

[33]  D. Sinclair,et al.  Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae , 2003, Nature.

[34]  J. Julien,et al.  Cycling at the interface between neurodevelopment and neurodegeneration , 2002, Cell Death and Differentiation.

[35]  S. Minucci,et al.  Human SIR2 deacetylates p53 and antagonizes PML/p53‐induced cellular senescence , 2002, The EMBO journal.

[36]  W. Forrester,et al.  A DNA vector-based RNAi technology to suppress gene expression in mammalian cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Johnson,et al.  Cdk5 phosphorylates p53 and regulates its activity , 2002, Journal of neurochemistry.

[38]  R. Weinberg,et al.  hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase , 2001, Cell.

[39]  J. Julien,et al.  Deregulation of Cdk5 in a Mouse Model of ALS Toxicity Alleviated by Perikaryal Neurofilament Inclusions , 2001, Neuron.

[40]  L. Guarente,et al.  Negative control of p53 by Sir2alpha promotes cell survival under stress. , 2001, Cell.

[41]  P. Defossez,et al.  Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. , 2000, Science.

[42]  K. Wang,et al.  Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. , 2000, Biochemical and biophysical research communications.

[43]  K. Ishiguro,et al.  Calpain-dependent Proteolytic Cleavage of the p35 Cyclin-dependent Kinase 5 Activator to p25* , 2000, The Journal of Biological Chemistry.

[44]  L. Tsai,et al.  Neurotoxicity induces cleavage of p35 to p25 by calpain , 2000, Nature.

[45]  L. Guarente,et al.  Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase , 2000, Nature.

[46]  L. Tsai,et al.  Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration , 1999, Nature.

[47]  M. McVey,et al.  The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. , 1999, Genes & development.

[48]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[49]  L. Mucke,et al.  Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein , 1995, Nature.

[50]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.