The performance of diagnostic-robust generalized potentials for the identification of multiple high leverage points in linear regression
暂无分享,去创建一个
M. R. Norazan | M. Habshah | A. H.M. Rahmatullah Imon | M. Habshah | M. Norazan | A. H. R. Rahmatullah Imon | M. Habshaha | M. R. Norazanb | Rahmatullah Imonc
[1] David M. Sebert,et al. A clustering algorithm for identifying multiple outliers in linear regression , 1998 .
[2] Ruben H. Zamar,et al. Robust Estimates of Location and Dispersion for High-Dimensional Datasets , 2002, Technometrics.
[3] Ali S. Hadi,et al. A new measure of overall potential influence in linear regression , 1992 .
[4] J. A. Díaz-García,et al. SENSITIVITY ANALYSIS IN LINEAR REGRESSION , 2022 .
[5] Roy E. Welsch,et al. Efficient Computing of Regression Diagnostics , 1981 .
[6] Francisco J. Prieto,et al. Multivariate Outlier Detection and Robust Covariance Matrix Estimation , 2001, Technometrics.
[7] J. Simonoff,et al. Procedures for the Identification of Multiple Outliers in Linear Models , 1993 .
[8] N. Draper,et al. Applied Regression Analysis , 1966 .
[9] S. Chatterjee. Sensitivity analysis in linear regression , 1988 .
[10] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[11] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[12] Sung-Soo Kim,et al. Detecting multiple outliers in linear regression using a cluster method combined with graphical visualization , 2007, Comput. Stat..
[13] P. Rousseeuw. Least Median of Squares Regression , 1984 .
[14] W. Krzanowski,et al. Simultaneous variable selection and outlier identification in linear regression using the mean-shift outlier model , 2008 .
[15] E. D. Rest,et al. Statistical Theory and Methodology in Science and Engineering , 1963 .
[16] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[17] Brian J Gray. A simple graphic for assessing influence in regression G , 1986 .
[18] V. Yohai,et al. The Detection of Influential Subsets in Linear Regression by Using an Influence Matrix , 1995 .
[19] A. Hadi,et al. BACON: blocked adaptive computationally efficient outlier nominators , 2000 .
[20] Thomas P. Ryan,et al. Modern Regression Methods , 1996 .
[21] R. Welsch,et al. The Hat Matrix in Regression and ANOVA , 1978 .
[22] A. Imon,et al. Deletion residuals in the detection of heterogeneity of variances in linear regression , 2009 .
[23] R. R. Hocking,et al. The regression dilemma , 1983 .
[24] Peter J. Huber,et al. Robust Statistics , 2005, Wiley Series in Probability and Statistics.
[25] Paul Davies,et al. A New Graphical Display for Locating Multiple Influential Observations, High Leverage Points and Outliers in Linear Regression , 2007 .
[26] S. Weisberg. Plots, transformations, and regression , 1985 .
[27] S. Chatterjee,et al. Regression Analysis by Example , 1979 .
[28] A. H. M. Rahmatullah Imon,et al. Identifying multiple influential observations in linear regression , 2005 .
[29] Ali S. Hadi,et al. Regression Analysis by Example: Chatterjee/Regression , 2006 .
[30] G. V. Kass,et al. Location of Several Outliers in Multiple-Regression Data Using Elemental Sets , 1984 .