A review outlook of rheological behavior of nano-fluids for solar energy harvesting

[1]  Amit Rai Dixit,et al.  Progress of Nanofluid Application in Machining: A Review , 2015 .

[2]  Jahar Sarkar,et al.  Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids , 2014 .

[3]  A. S. Dalkılıç,et al.  Numerical investigation for the calculation of TiO2–water nanofluids' pressure drop in plain and enhanced pipes ☆ , 2014 .

[4]  Ahmed A. D. Sarhan,et al.  Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption , 2014 .

[5]  A. Sarhan,et al.  Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy , 2014 .

[6]  Ahmed A. D. Sarhan,et al.  Investigation on the morphology of the machined surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nanolubrication system , 2014 .

[7]  Ahmed A. D. Sarhan,et al.  Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining , 2014 .

[8]  D. Rashtchian,et al.  Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT , 2014 .

[9]  S. Mohtasebi,et al.  Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures , 2013 .

[10]  A. Sarhan,et al.  Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nanolubrication system , 2013 .

[11]  Jahar Sarkar,et al.  Performance comparison of the plate heat exchanger using different nanofluids , 2013 .

[12]  Jahar Sarkar,et al.  Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger , 2013 .

[13]  Milad Tajik Jamal-Abad,et al.  Experimental studies on the heat transfer and pressure drop characteristics of Cu–water and Al–water nanofluids in a spiral coil , 2013 .

[14]  Zhixiong Zhou,et al.  The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication , 2013 .

[15]  Zhixiong Zhou,et al.  Investigation on the Effect of Nanofluid Parameters on MQL Grinding , 2013 .

[16]  A. Sarhan,et al.  An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy , 2012, The International Journal of Advanced Manufacturing Technology.

[17]  J. Amani,et al.  Experimental study on the effect of TiO2–water nanofluid on heat transfer and pressure drop , 2012 .

[18]  A. H. Nikseresht,et al.  Thermal performance and pressure drop analysis of nanofluids in turbulent forced convective flows , 2012 .

[19]  Zhixiong Zhou,et al.  Investigation of grinding characteristic using nanofluid minimum quantity lubrication , 2012 .

[20]  S. Khandekar,et al.  Nano-Cutting Fluid for Enhancement of Metal Cutting Performance , 2012 .

[21]  D. Das,et al.  A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power , 2012 .

[22]  J. Nam,et al.  An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL) , 2012 .

[23]  A. Malshe,et al.  Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants , 2012 .

[24]  A. Sarhan,et al.  Reduction of power and lubricant oil consumption in milling process using a new SiO2 nanolubrication system , 2012 .

[25]  A. Rashidi,et al.  Effect of CNT structures on thermal conductivity and stability of nanofluid , 2012 .

[26]  Tong-Bou Chang,et al.  Effects of particle volume fraction on spray heat transfer performance of Al2O3–water nanofluid , 2012 .

[27]  Jahar Sarkar,et al.  A critical review on convective heat transfer correlations of nanofluids , 2011 .

[28]  Sang Won Lee,et al.  Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication , 2011 .

[29]  Patrick Kwon,et al.  Effect of Nano-Enhanced Lubricant in Minimum Quantity Lubrication Balling Milling , 2011 .

[30]  Zhiyu Zhang,et al.  Effect of Nanoparticle Lubrication in Diamond Turning of Reaction-Bonded SiC , 2011, Int. J. Autom. Technol..

[31]  Rahman Saidur,et al.  A REVIEW ON APPLICATIONS AND CHALLENGES OF NANOFLUIDS , 2011 .

[32]  J. Thibault,et al.  Rheological characteristics of non-Newtonian nanofluids: Experimental investigation , 2011 .

[33]  B. K. Vinayagam,et al.  Nano surface generation of grinding process using carbon nano tubes , 2010 .

[34]  R R Srikant,et al.  Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel , 2010 .

[35]  Matt K. Petersen,et al.  Effect of particle shape and charge on bulk rheology of nanoparticle suspensions , 2010, 1004.2411.

[36]  Somchai Wongwises,et al.  Enhancement of heat transfer using nanofluids—An overview , 2010 .

[37]  S. Wongwises,et al.  An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime , 2010 .

[38]  S. Melkote,et al.  An investigation of graphite nanoplatelets as lubricant in grinding , 2009 .

[39]  P. Alphonse,et al.  Effect of PEG on rheology and stability of nanocrystalline titania hydrosols. , 2009, Journal of colloid and interface science.

[40]  I. Tavman,et al.  Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids , 2009 .

[41]  S. Kakaç,et al.  Review of convective heat transfer enhancement with nanofluids , 2009 .

[42]  Haisheng Chen,et al.  Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology , 2009 .

[43]  Albert J. Shih,et al.  Application of Nanofluids in Minimum Quantity Lubrication Grinding , 2008 .

[44]  Seok Pil Jang,et al.  Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles , 2008 .

[45]  K. Leong,et al.  Investigations of thermal conductivity and viscosity of nanofluids , 2008 .

[46]  Chunqing Tan,et al.  Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids) , 2008 .

[47]  Chunqing Tan,et al.  Rheological behaviour of nanofluids , 2007 .

[48]  Haisheng Chen,et al.  Rheological behaviour of ethylene glycol based titania nanofluids , 2007 .

[49]  Haisheng Chen,et al.  Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe , 2007 .

[50]  Somchai Wongwises,et al.  A critical review of convective heat transfer of nanofluids , 2007 .

[51]  Somchai Wongwises,et al.  Critical review of heat transfer characteristics of nanofluids , 2007 .

[52]  P. V. Rao,et al.  Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling , 2006 .

[53]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[54]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[55]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[56]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[57]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[58]  S. Kalaiselvam,et al.  Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids , 2014 .

[59]  Farshad Kowsary,et al.  Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime , 2013 .

[60]  Kamlakar P Rajurkar,et al.  Study of tribo-chemical lubricant film formation during application of nanolubricants in minimum quantity lubrication (MQL) grinding , 2012 .

[61]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[62]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .