A Velocity-Adaptive Handover Scheme for Mobile WiMAX

Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support mobile, some kinds of handover schemes must be adopted, and the hard handover is defined as mandatory. Since the data transmission should be paused during the hard handover process, it causes handover delay in mobile communication. The handover delay makes severe degradation in system performance when implemented in real-time applications such as IPTV and VoIP. The existing draft standard considers only the received signal strength when deciding handover initiation. However, the velocity factor also has an important influence on handover initiation and can not be neglected. To deal with these problems, this article proposes a velocity-adaptive handover scheme. This scheme adopts dynamic handover threshold according to different velocity to skip some unnecessary handover stages, reduces handover delay and enhances the network resource utilization. The simulation result and performance analysis validate the efficiency of the proposed scheme.

[1]  M. D. Austin,et al.  Velocity adaptive handoff algorithms for microcellular systems , 1993, Proceedings of 2nd IEEE International Conference on Universal Personal Communications.

[2]  Taesoo Kwon,et al.  Fast handover scheme for real-time downlink services in IEEE 802.16e BWA system , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[3]  Doo Hwan Lee,et al.  Fast handover algorithm for IEEE 802.16e broadband wireless access system , 2006, 2006 1st International Symposium on Wireless Pervasive Computing.

[4]  Virtual Bridged,et al.  IEEE Standards for Local and Metropolitan Area Networks: Specification for 802.3 Full Duplex Operation , 1997, IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997 (Supplement to ISO/IEC 8802-3: 1996/ANSI/IEEE Std 802.3, 1996 Edition).

[5]  Ieee Microwave Theory,et al.  Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems — Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands , 2003 .

[6]  Tracy Camp,et al.  A survey of mobility models for ad hoc network research , 2002, Wirel. Commun. Mob. Comput..

[7]  Todor Cooklev,et al.  Air Interface for Fixed Broadband Wireless Access Systems , 2004 .