Scale Adaptive Dictionary Learning

Dictionary learning has been widely used in many image processing tasks. In most of these methods, the number of basis vectors is either set by experience or coarsely evaluated empirically. In this paper, we propose a new scale adaptive dictionary learning framework, which jointly estimates suitable scales and corresponding atoms in an adaptive fashion according to the training data, without the need of prior information. We design an atom counting function and develop a reliable numerical scheme to solve the challenging optimization problem. Extensive experiments on texture and video data sets demonstrate quantitatively and visually that our method can estimate the scale, without damaging the sparse reconstruction ability.

[1]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[2]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[3]  Ronen Basri,et al.  Actions as space-time shapes , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[4]  Pascal Frossard,et al.  Dictionary Learning for Stereo Image Representation , 2011, IEEE Transactions on Image Processing.

[5]  Michael Elad,et al.  Sparse and Redundant Modeling of Image Content Using an Image-Signature-Dictionary , 2008, SIAM J. Imaging Sci..

[6]  Cewu Lu,et al.  Online Robust Dictionary Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Gabriel Peyré,et al.  Sparse Modeling of Textures , 2009, Journal of Mathematical Imaging and Vision.

[8]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[9]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[10]  Ehud Rivlin,et al.  Robust Real-Time Unusual Event Detection using Multiple Fixed-Location Monitors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  R. Rockafellar,et al.  Nonsmooth mechanics and analysis : theoretical and numerical advances , 2006 .

[12]  Guillermo Sapiro,et al.  An MDL Framework for Sparse Coding and Dictionary Learning , 2011, IEEE Transactions on Signal Processing.

[13]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[14]  Mubarak Shah,et al.  Abnormal crowd behavior detection using social force model , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, ICPR 2004.

[16]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[17]  Cewu Lu,et al.  Contrast preserving decolorization , 2012, 2012 IEEE International Conference on Computational Photography (ICCP).

[18]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words , 2008, International Journal of Computer Vision.

[19]  Cewu Lu,et al.  Abnormal Event Detection at 150 FPS in MATLAB , 2013, 2013 IEEE International Conference on Computer Vision.

[20]  Serge J. Belongie,et al.  Behavior recognition via sparse spatio-temporal features , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[21]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[22]  Yang Yang,et al.  Constructing Visual Vocabularies Using Sparse Coding for Action Recognition , 2009, 2009 International Conference on Information Engineering and Computer Science.

[23]  Patrick Pérez,et al.  Region filling and object removal by exemplar-based image inpainting , 2004, IEEE Transactions on Image Processing.

[24]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  David Zhang,et al.  Fisher Discrimination Dictionary Learning for sparse representation , 2011, 2011 International Conference on Computer Vision.

[26]  Guillermo Sapiro,et al.  Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.

[27]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[28]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words , 2006, BMVC.

[29]  Zhihua Zhang,et al.  A non-convex relaxation approach to sparse dictionary learning , 2011, CVPR 2011.

[30]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[31]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.