The Hilbert scheme of infinite affine space and algebraic K-theory

We study the Hilbert scheme $\mathrm{Hilb}_d(\mathbb{A}^\infty)$ from an $\mathbb{A}^1$-homotopical viewpoint and obtain applications to algebraic K-theory. We show that the Hilbert scheme $\mathrm{Hilb}_d(\mathbb{A}^\infty)$ is $\mathbb{A}^1$-equivalent to the Grassmannian of $(d-1)$-planes in $\mathbb{A}^\infty$. We then describe the $\mathbb{A}^1$-homotopy type of $\mathrm{Hilb}_d(\mathbb{A}^n)$ in a range, for $n$ large compared to $d$. For example, we compute the integral cohomology of $\mathrm{Hilb}_d(\mathbb{A}^n)(\mathbb{C})$ in a range. We also deduce that the forgetful map $\mathrm{FFlat}\to\mathrm{Vect}$ from the moduli stack of finite locally free schemes to that of finite locally free sheaves is an $\mathbb{A}^1$-equivalence after group completion. This implies that the moduli stack $\mathrm{FFlat}$, viewed as a presheaf with framed transfers, is a model for the effective motivic spectrum $\mathrm{kgl}$ representing algebraic K-theory. Combining our techniques with the recent work of Bachmann, we obtain Hilbert scheme models for the $\mathrm{kgl}$-homology of smooth proper schemes over a perfect field.

[1]  Burt Totaro,et al.  Torus actions, Morse homology, and the Hilbert scheme of points on affine space , 2020, Épijournal de Géométrie Algébrique.

[2]  Tom Bachmann Cancellation theorem for motivic spaces with finite flat transfers , 2020, Documenta Mathematica.

[3]  Simon Pepin Lehalleur,et al.  On the Voevodsky motive of the moduli space of Higgs bundles on a curve , 2019, Selecta Mathematica.

[4]  Marc Hoyois,et al.  The localization theorem for framed motivic spaces , 2018, Compositio Mathematica.

[5]  Jeremy Hahn,et al.  Exotic multiplications on periodic complex bordism , 2019, Journal of Topology.

[6]  C. Barwick,et al.  Spectral Mackey functors and equivariant algebraic K-theory, II , 2014, Tunisian Journal of Mathematics.

[7]  Adeel A. Khan,et al.  On the infinite loop spaces of algebraic cobordism and the motivic sphere , 2019, 1911.02262.

[8]  Joachim Jelisiejew Pathologies on the Hilbert scheme of points , 2018, Inventiones mathematicae.

[9]  R. Ghiloni,et al.  Differentiable approximation of continuous semialgebraic maps , 2018, Selecta Mathematica.

[10]  Oscar Zariski,et al.  Connectedness of the Hilbert scheme , 2017 .

[11]  Tom Bachmann The generalized slices of Hermitian K‐theory , 2016, 1610.01346.

[12]  Marc Hoyois Cdh Descent in Equivariant Homotopy $K$-Theory , 2016, Documenta Mathematica.

[13]  B. Poonen ISOMORPHISM TYPES OF COMMUTATIVE ALGEBRAS OF FINITE RANK OVER AN ALGEBRAICALLY CLOSED FIELD , 2016 .

[14]  David Rydh,et al.  General Hilbert Stacks and Quot Schemes , 2013, 1306.4118.

[15]  C. Rezk,et al.  PROOF OF THE BLAKERS-MASSEY THEOREM , 2015 .

[16]  P. Ostvaer,et al.  The motivic Steenrod algebra in positive characteristic , 2013, 1305.5690.

[17]  T. Schedler Deformations of algebras in noncommutative geometry , 2012, 1212.0914.

[18]  M. Spitzweck A commutative P^1-spectrum representing motivic cohomology over Dedekind domains , 2012, 1207.4078.

[19]  F. Morel A1-Algebraic Topology over a Field , 2012 .

[20]  P. Ostvaer,et al.  Motivic twisted K-theory , 2010, 1008.4915.

[21]  David Gepner,et al.  On the Motivic Spectra Representing Algebraic Cobordism and Algebraic K-Theory , 2007, 0712.2817.

[22]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[23]  G. Schaefer THE PUNCTUAL HILBERT SCHEME : AN INTRODUCTION , 2009 .

[24]  P. A. Østvær,et al.  Modules over motivic cohomology , 2008 .

[25]  P. Ostvaer,et al.  Chern classes, K-theory and Landweber exactness over nonregular base schemes , 2008, 0809.0267.

[26]  Bjorn Poonen,et al.  The moduli space of commutative algebras of finite rank , 2006, math/0608491.

[27]  M. Levine The homotopy coniveau tower , 2005, math/0510334.

[28]  D. Laksov,et al.  An elementary, explicit, proof of the existence of quot schemes of points , 2007 .

[29]  Edoardo Sernesi,et al.  Deformations of algebraic schemes , 2006 .

[30]  Thomas H. Geisser Motivic cohomology over Dedekind rings , 2004 .

[31]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[32]  L. Göttsche Hilbert Schemes of Points on Surfaces , 2002 .

[33]  Mark Haiman,et al.  Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.

[34]  Vladimir Voevodsky,et al.  A1-homotopy theory of schemes , 1999 .

[35]  中島 啓 Lectures on Hilbert schemes of points on surfaces , 1999 .

[36]  M. Levine TECHNIQUES OF LOCALIZATION IN THE THEORY OF ALGEBRAIC CYCLES , 1999 .

[37]  A. Suslin,et al.  Singular homology of abstract algebraic varieties , 1996 .

[38]  G. Ellingsrud,et al.  On the homology of the Hilbert scheme of points in the plane , 1987 .

[39]  A. Beauville,et al.  Variétés Kähleriennes dont la première classe de Chern est nulle , 1983 .

[40]  G. Segal K-homology theory and algebraic K-theory , 1977 .

[41]  A. Iarrobino,et al.  Reducibility of the families of 0-dimensional schemes on a variety , 1972 .

[42]  M. Raynaud,et al.  Critères de platitude et de projectivité , 1971 .

[43]  G. Horrocks Sheaves on projective space invariant under the unitriangular group , 1970 .

[44]  B. Iversen Linear Determinants with Applications to the Picard Scheme of a Family of Algebraic Curves , 1970 .