Triple power law for concrete creep
暂无分享,去创建一个
[1] Zdeněk P. Bažant,et al. Double-power logarithmic law for concrete creep , 1984 .
[2] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[3] Zdenek P. Bazant,et al. New Model for Practical Prediction of Creep and Shrinkage , 1982 .
[4] J. Dennis,et al. Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation , 1971 .
[5] A. D. Ross. Creep of Concrete under Variable Stress , 1958 .
[6] Zdenek P. Bazant. Viscoelasticity of Solidifying Porous Material-Concrete , 1977 .
[7] Zdenek P. Bazant,et al. Log Double Power Law for Concrete Creep , 1985 .
[8] Zdeněk P. Bažant,et al. Can the creep curves for different loading ages diverge , 1978 .
[9] E. Çinlar,et al. STOCHASTIC PROCESS FOR EXTRAPOLATING CONCRETE CREEP , 1977 .
[10] E. Osman,et al. Double power law for basic creep of concrete , 1976 .
[11] F. H. Wittmann,et al. Mathematical Models for Creep and Shrinkage of Concrete , 2022 .
[12] R. Browne,et al. The influence of loading age and temperature on the long term creep behaviour of concrete in a sealed, moisture stable, state , 1969 .
[13] Zdenek P. Balant,et al. Creep and Shrinkage Characterisation for Analyzing Prestressed Concrete Structures , 1980 .
[14] Jacob Ralph Shank,et al. The plastic flow of concrete , 1935 .
[15] Z. P. Bažant,et al. Practical prediction of time-dependent deformations of concrete , 1978 .
[16] G. M.. The General Theory of Dirichlet Series , Nature.
[17] Zdenek P. Bazant,et al. Practical prediction of time-dependent deformations of concrete , 1980 .