Adaptive structure metrics for automated feedback provision in intelligent tutoring systems

Typical intelligent tutoring systems rely on detailed domain-knowledge which is hard to obtain and difficult to encode. As a data-driven alternative to explicit domain-knowledge, one can present learners with feedback based on similar existing solutions from a set of stored examples. At the heart of such a data-driven approach is the notion of similarity. We present a general-purpose framework to construct structure metrics on sequential data and to adapt those metrics using machine learning techniques. We demonstrate that metric adaptation improves the classification of wrong versus correct learner attempts in a simulated data set from sports training, and the classification of the underlying learner strategy in a real Java programming dataset.

[1]  Ryan Shaun Joazeiro de Baker,et al.  New Potentials for Data-Driven Intelligent Tutoring System Development and Optimization , 2013, AI Mag..

[2]  Brian Kulis,et al.  Metric Learning: A Survey , 2013, Found. Trends Mach. Learn..

[3]  Jun Nakanishi,et al.  Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors , 2013, Neural Computation.

[4]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[5]  O. Gotoh An improved algorithm for matching biological sequences. , 1982, Journal of molecular biology.

[6]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[7]  Thomas Gärtner,et al.  Graph Kernels , 2017, Encyclopedia of Machine Learning and Data Mining.

[8]  Barbara Hammer,et al.  How to Select an Example? A Comparison of Selection Strategies in Example-Based Learning , 2014, Intelligent Tutoring Systems.

[9]  IjspeertAuke Jan,et al.  Dynamical movement primitives , 2013 .

[10]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[11]  John D. Kececioglu,et al.  Simple and Fast Inverse Alignment , 2006, RECOMB.

[12]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[13]  Frank-Michael Schleif,et al.  Learning vector quantization for (dis-)similarities , 2014, Neurocomputing.

[14]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[15]  Marc Sebban,et al.  Good edit similarity learning by loss minimization , 2012, Machine Learning.

[16]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[17]  Alex Waibel,et al.  Readings in speech recognition , 1990 .

[18]  Alessandro Sperduti,et al.  Mining Structured Data , 2010, IEEE Computational Intelligence Magazine.

[19]  Fred J. Damerau,et al.  A technique for computer detection and correction of spelling errors , 1964, CACM.

[20]  Maya R. Gupta,et al.  Similarity-based Classification: Concepts and Algorithms , 2009, J. Mach. Learn. Res..

[21]  Tom Murray,et al.  Authoring tools for advanced technology learning environments : toward cost-effective adaptive, interactive and intelligent educational software , 2003 .

[22]  Barbara Hammer,et al.  Domain-Independent Proximity Measures in Intelligent Tutoring Systems , 2013, EDM.

[23]  Barbara Hammer,et al.  Example-based feedback provision using structured solution spaces , 2014, Int. J. Learn. Technol..

[24]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[25]  Michael Eagle,et al.  Experimental Evaluation of Automatic Hint Generation for a Logic Tutor , 2011, Int. J. Artif. Intell. Educ..

[26]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[27]  Albert T. Corbett,et al.  Cognitive Tutor: Applied research in mathematics education , 2007, Psychonomic bulletin & review.

[28]  Stefan Kopp,et al.  A Multimodal System for Real-Time Action Instruction in Motor Skill Learning , 2015, ICMI.

[29]  Benjamin Paaßen Adaptive Affine Sequence Alignment Using Algebraic Dynamic Programming , 2015 .

[30]  Jean-Louis Lassez,et al.  Similarity Based Classification , 2003, IDA.

[31]  KimGerard Jounghyun,et al.  Implementation and evaluation of "just follow me" , 2002 .

[32]  Vincent Aleven,et al.  Concepts, Structures, and Goals: Redefining Ill-Definedness , 2009, Int. J. Artif. Intell. Educ..

[33]  Frank-Michael Schleif,et al.  Metric learning for sequences in relational LVQ , 2015, Neurocomputing.

[34]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[35]  Leonidas J. Guibas,et al.  Learning Program Embeddings to Propagate Feedback on Student Code , 2015, ICML.

[36]  Kenneth R. Koedinger,et al.  Automatic Generation of Programming Feedback; A Data-Driven Approach , 2013, AIED Workshops.

[37]  T. K. Vintsyuk Speech discrimination by dynamic programming , 1968 .

[38]  Jacqueline Bourdeau,et al.  Advances in Intelligent Tutoring Systems , 2010 .

[39]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[40]  Marc Sebban,et al.  A Survey on Metric Learning for Feature Vectors and Structured Data , 2013, ArXiv.

[41]  Gerard Jounghyun Kim,et al.  Implementation and Evaluation of Just Follow Me: An Immersive, VR-Based, Motion-Training System , 2002, Presence: Teleoperators & Virtual Environments.

[42]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[43]  Michael Biehl,et al.  Adaptive Relevance Matrices in Learning Vector Quantization , 2009, Neural Computation.

[44]  Robert Giegerich,et al.  A discipline of dynamic programming over sequence data , 2004, Sci. Comput. Program..