계층적 군집분석 기반의 Continuous Risk Profile을 이용한
暂无分享,去创建一个
Continuous Risk Profile(CRP)은 고속도로의 사고취약구간을 선정하는 방법론 중에서 정확성과 효율성이 뛰어난
것으로 알려져 있다. 그러나 전통적인 CRP는 데이터베이스 구축을 위한 대규모 투자를 필요로 하는 안전성능함수를
이용한다. 본 연구는 안전성능함수 대신 동질 그룹들의 평균사고건수를 규모조정계수로 이용하는 CRP를 제안하는
것을 목적으로 한다. 고속도로 구간들을 동질 그룹으로 분류하기 위하여 각 구간의 AADT와 차로 수 자료를 기반으
로 하는 계층적 군집분석이 수행된다. 제안된 모형은 캘리포니아의 I-880 자료를 이용하여 다른 여러 가지 사고취약
구간 선정방법들과 비교된다. 분석 결과에 따르면, 제안된 모형은 false negative를 발생시키지 않으며 false positive
rate를 감소시킨다. 본 연구에서 개발된 방법론은 추가적인 복잡한 데이터베이스 없이 고속도로 사고취약구간을 선정
하는 데에 활용될 수 있으며, 또한 고속도로 안전관리시스템을 개선하는 데에 기여할 수 있다.