Constructing Lyapunov-Krasovskii functionals for linear time delay systems

We present an algorithmic methodology for constructing Lyapunov-Krasovskii (L-K) functionals for linear time-delay systems, using the sum of squares decomposition of multivariate polynomials to solve the related infinite dimensional linear matrix inequalities (LMIs). The resulting functionals retain the structure of the complete L-K functional and yield conditions that approach the true delay-dependent stability bounds. The method can also he used to construct parameter-dependent L-K functionals for certifying stability under parametric uncertainty.

[1]  S. Lall,et al.  Constructing Lyapunov Functions for nonlinear delay-differential equations using semidefinite programming , 2004 .

[2]  Rakesh V. Vohra,et al.  Mathematics of the Internet , 2001 .

[3]  Peter J Seiler,et al.  SOSTOOLS: Sum of squares optimization toolbox for MATLAB , 2002 .

[4]  V. Kolmanovskii,et al.  On the Liapunov-Krasovskii functionals for stability analysis of linear delay systems , 1999 .

[5]  Pierre-Alexandre Bliman,et al.  Lyapunov equation for the stability of linear delay systems of retarded and neutral type , 2002, IEEE Trans. Autom. Control..

[6]  Derong Liu The Mathematics of Internet Congestion Control , 2005, IEEE Transactions on Automatic Control.

[7]  P. Parrilo,et al.  Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.

[8]  Fernando Paganini,et al.  Scalable laws for stable network congestion control , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[9]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[10]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[11]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[12]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[13]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[14]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[15]  A. Papachristodoulou Analysis of nonlinear time-delay systems using the sum of squares decomposition , 2004, Proceedings of the 2004 American Control Conference.

[16]  Kolmanovskii,et al.  Introduction to the Theory and Applications of Functional Differential Equations , 1999 .

[17]  A. Papachristodoulou,et al.  On the construction of Lyapunov functions using the sum of squares decomposition , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[18]  PooGyeon Park,et al.  A delay-dependent stability criterion for systems with uncertain time-invariant delays , 1999, IEEE Trans. Autom. Control..