Spatial search on a two-dimensional lattice with long-range interactions

Quantum-walk-based algorithms that search a marked location among $N$ locations on a $d$-dimensional lattice succeeds in time $O(\sqrt{N})$ for $dg2$, while this is not found to be possible when $d=2$. In this paper, we consider a spatial search algorithm using continuous-time quantum walk on a two-dimensional square lattice with the existence of additional long-range edges. We examined such a search on a probabilistic graph model where an edge connecting non-nearest-neighbor lattice points $i$ and $j$ apart by a distance $|i\ensuremath{-}j|$ is added by probability ${p}_{ij}={|i\ensuremath{-}j|}^{\ensuremath{-}\ensuremath{\alpha}}\phantom{\rule{1em}{0ex}}(\ensuremath{\alpha}\ensuremath{\ge}0)$. Through numerical analysis, we found that the search succeeds in time $O(\sqrt{N})$ when $\ensuremath{\alpha}\ensuremath{\le}{\ensuremath{\alpha}}_{c}=2.4\ifmmode\pm\else\textpm\fi{}0.1$. For $\ensuremath{\alpha}g2$, the expectation value of the additional long-range edges on each node scales as a constant when $N\ensuremath{\rightarrow}\ensuremath{\infty}$, which means that search time of $O(\sqrt{N})$ is achieved on a graph with average degree scaling as a constant.

[1]  S. Boettcher,et al.  Renormalization group for a continuous-time quantum search in finite dimensions , 2017 .

[2]  R. Portugal,et al.  Quantum search on the two-dimensional lattice using the staggered model with Hamiltonians , 2017, 1701.01468.

[3]  Andris Ambainis,et al.  Spatial Search by Quantum Walk is Optimal for Almost all Graphs. , 2015, Physical review letters.

[4]  Andrew M. Childs,et al.  Spatial search by continuous-time quantum walks on crystal lattices , 2014, 1403.2676.

[5]  Philippe Deprez,et al.  Inhomogeneous Long-Range Percolation for Real-Life Network Modeling , 2014 .

[6]  Gregor Tanner,et al.  Quantum search on graphene lattices. , 2013, Physical review letters.

[7]  Apoorva D. Patel,et al.  Search on a hypercubic lattice using a quantum random walk. II. d=2 , 2010, 1003.0065.

[8]  Shlomo Havlin,et al.  Wave localization in complex networks with high clustering. , 2008, Physical review letters.

[9]  Avatar Tulsi,et al.  Faster quantum-walk algorithm for the two-dimensional spatial search , 2008, 0801.0497.

[10]  Andrew M. Childs,et al.  Spatial search and the Dirac equation , 2004, quant-ph/0405120.

[11]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[12]  D. Gamarnik,et al.  The diameter of a long‐range percolation graph , 2001, SODA '02.

[13]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[14]  Jon M. Kleinberg,et al.  Navigation in a small world , 2000, Nature.

[15]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[16]  E. Farhi,et al.  Analog analogue of a digital quantum computation , 1996, quant-ph/9612026.

[17]  Shapiro,et al.  Statistics of spectra of disordered systems near the metal-insulator transition. , 1993, Physical review. B, Condensed matter.

[18]  Fisher,et al.  Finite-size scaling and correlation lengths for disordered systems. , 1986, Physical review letters.

[19]  L. Schulman,et al.  One dimensional 1/|j − i|S percolation models: The existence of a transition forS≦2 , 1986 .

[20]  Z. Zhang,et al.  Long-range percolation in one dimension , 1983 .