On limits and colimits of variety-based topological systems

The paper provides variety-based extensions of the concepts of (lattice-valued) interchange system and space, introduced by Denniston, Melton and Rodabaugh, and shows that variety-based interchange systems incorporate topological systems of Vickers, state property systems of Aerts, Chu spaces (over the category of sets in the sense of Pratt) of P.-H. Chu and contexts (of formal concept analysis) of Wille. The paper also provides an explicit description of (co)limits in the category of variety-based topological systems and applies the obtained results to extend the claim of Denniston et al. that the category of topological systems of Vickers is small initially topological over the category of sets.

[1]  Cosimo Guido,et al.  L-topological spaces as spaces of points , 2011, Fuzzy Sets Syst..

[2]  Stanislav Krajci A categorical view at generalized concept lattices , 2007, Kybernetika.

[3]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[4]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[5]  S. Vickers Topology via Logic , 1989 .

[6]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[7]  Patrik Eklund Category theoretic properties of fuzzy topological spaces , 1984 .

[8]  Pedro Resende,et al.  Quantales, finite observations and strong bisimulation , 2001, Theor. Comput. Sci..

[9]  Sergey A. Solovyov,et al.  Sobriety and spatiality in varieties of algebras , 2008, Fuzzy Sets Syst..

[10]  Patrik Eklund A comparison of lattice-theoretic approaches to fuzzy topology , 1986 .

[11]  Diederik Aerts,et al.  Foundations of Quantum Physics: A General Realistic and Operational Approach , 2001, quant-ph/0105109.

[12]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[13]  Jeffrey T. Denniston,et al.  Functorial relationships between lattice-valued topology and topological systems , 2009 .

[14]  Diederik Aerts,et al.  State Property Systems and Closure Spaces: A Study of Categorical Equivalence , 1999 .

[15]  Jan Paseka,et al.  Algebraic and Categorical Aspects of Quantales , 2008 .

[16]  S. Solovyov ON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS , 2011 .

[17]  Stephen E. Rodabaugh,et al.  Powerset Operator Foundations For Poslat Fuzzy Set Theories And Topologies , 1999 .

[18]  John R. Isbell,et al.  Atomless Parts of Spaces. , 1972 .

[19]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[20]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[21]  Austin Melton,et al.  Interweaving algebra and topology: Lattice-valued topological systems , 2012, Fuzzy Sets Syst..

[22]  Fatma Bayoumi,et al.  Overview and comparison of localic and fixed-basis topological products , 2010, Fuzzy Sets Syst..

[23]  Diederik Aerts,et al.  On the Amnestic Modification of the Category of State Property Systems , 2002, Appl. Categorical Struct..

[24]  Stephen E. Rodabaugh,et al.  POWERSET OPERATOR FOUNDATIONS FOR POINT-SET LATTICE-THEORETIC (POSLAT) FUZZY SET THEORIES AND TOPOLOGIES , 1997 .

[25]  S. Solovyov CATEGORICALLY-ALGEBRAIC DUALITIES , 2010 .

[26]  Stephen E. Rodabaugh,et al.  Point-set lattice-theoretic topology , 1991 .

[27]  Guo-Qiang Zhang Chu Spaces, Concept Lattices, and Domains , 2003, MFPS.

[28]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .

[29]  J. Goguen L-fuzzy sets , 1967 .

[30]  Michiel Hazewinkel,et al.  Handbook of algebra , 1995 .

[31]  Stephen E. Rodabaugh,et al.  Categorical Foundations of Variable-Basis Fuzzy Topology , 1999 .

[32]  Steven J. Vickers,et al.  Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.

[33]  Cosimo Guido,et al.  Fuzzy points and attachment , 2010, Fuzzy Sets Syst..

[34]  A. V. D. Voorde A Categorical Approach to T1 Separation and the Product of State Property Systems , 2000 .

[35]  Sergey A. Solovyov,et al.  Variable-basis topological systems versus variable-basis topological spaces , 2010, Soft Comput..

[36]  Sergey A. Solovyov,et al.  Composite variety-based topological theories , 2012, Fuzzy Sets Syst..

[37]  S. Solovyov POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES , 2011 .

[38]  S. Lane Categories for the Working Mathematician , 1971 .

[39]  Bernhard Ganter,et al.  Formale Begriffsanalyse - mathematische Grundlagen , 1996 .

[40]  Paul Ernest The One and the Many , 2012 .

[41]  S. Solovyov Localification of variable-basis topological systems , 2011 .

[42]  Stephen Ernest Rodabaugh,et al.  Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics , 2007, Int. J. Math. Math. Sci..

[43]  Sergey A. Solovyov,et al.  On a generalization of the concept of state property system , 2011, Soft Comput..

[44]  George Gratzer,et al.  Universal Algebra , 1979 .