Corrosion in high-temperature and supercritical water and aqueous solutions: a review

Abstract The aim of the present article is to review some of the common corrosion phenomena and describe the predominant corrosion mechanisms in high-temperature and supercritical water. Corrosion in aqueous systems up to supercritical temperatures is determined by several solution-dependent and material-dependent factors. Solution-depending factors are the density, the temperature, the pH value, and the electrochemical potential of the solution, and the aggressiveness of the attacking anions. Material-dependent parameters include alloy composition, surface condition, material purity, and heat treatment. Corrosion phenomena that are observed include intergranular corrosion, pitting, general corrosion, and stress corrosion cracking. The solubility and dissociation of both attacking species and corrosion products play the most important role for corrosion in high-temperature water. Both solubility and dissociation processes are strongly influenced by the density, or the ionic product, respectively, of the solvent. High values of both parameters favor ionic reactions, and thus, accelerate electrochemical forms of corrosion. At low densities, water behaves like a non-polar solvent, and thus, ions associate. In these cases, the concentation of e.g. aggressive H + drops down and thus, solutions containing species such as HCl become neutral and thus less aggressive. Further, corrosion products plug the surface and material loss stops. Materials parameters have influence especially on the initiation of corrosion. In the present article, these factors are linked with the physical and chemical properties of high-temperature and supercritical water. An outlook is also given for future research needs.

[1]  D. Cubicciotti,et al.  Thermodynamics of Aqueous Sulfur Species to 300°C and Potential‐pH Diagrams , 1983 .

[2]  Richard R. Steeper,et al.  Destruction of Representative Navy Wastes Using Supercritical Water Oxidation. Final report , 1993 .

[3]  J. Abeln,et al.  Supercritical Water Oxidation: State of the Art , 1999 .

[4]  S. F. Rice,et al.  Oxidation rates of common organic compounds in supercritical water , 1998 .

[5]  C. Martino,et al.  Reactions at supercritical conditions: Applications and fundamentals , 1995 .

[6]  P. Marcus,et al.  Potential‐pH Diagrams for Sulfur and Oxygen Adsorbed on Chromium in Water , 1997 .

[7]  R. Staehle,et al.  Advances in Corrosion Science and Technology , 1972 .

[8]  M. Kluth,et al.  Hydrothermal gasification of biomass and organic wastes , 2000 .

[9]  N. Sato The stability of localized corrosion , 1995 .

[10]  E. Dinjus,et al.  Transpassive Dissolution of Alloy 625, Chromium, Nickel, and Molybdenum in High-Temperature Solutions Containing Hydrochloric Acid and Oxygen , 2000 .

[11]  Maria L. Japas,et al.  High pressure phase equilibria and PVT-data of the water-oxygen system including water-air to 673 K and 250 MPa , 1985 .

[12]  P. Rossky,et al.  Solution Chemistry in Supercritical Water: Spectroscopy and Simulation , 2000 .

[13]  E. U. Franck Supercritical Water and Other Fluids — A Historical Perspective , 2000 .

[14]  J. Congleton,et al.  Stress corrosion cracking of alloy 600 and alloy 690 in hydrogen/steam at 380 °C , 1997 .

[15]  N. Sato 1989 Whitney Award Lecture: Toward a More Fundamental Understanding of Corrosion Processes , 1989 .

[16]  C. Friedrich,et al.  The corrosion of tantalum in oxidizing sub- and supercritical aqueous solutions of HCl, H2SO4 and H3PO4 , 1999 .

[17]  O. Larsen,et al.  Corrosion in ultra supercritical boilers for straw combustion , 1997 .

[18]  M. Jayalakshmi,et al.  EMPIRICAL AND DETERMINISTIC MODELS OF PITTING CORROSION - AN OVERVIEW , 1996 .

[19]  E. Franck Überkritisches Wasser als elektrolytisches Lösungsmittel , 1961 .

[20]  C. Melendres,et al.  Electrochemical and Optical Techniques for the Study and Monitoring of Metallic Corrosion , 1991 .

[21]  Annett Gebert,et al.  Influence of oxide structure on the elevated temperature pitting behaviour of Fe-Cr-Ni alloys , 1997 .

[22]  Digby D. Macdonald,et al.  Corrosion in Supercritical Water Oxidation Systems: A Phenomenological Analysis , 1995 .

[23]  P. Kritzer,et al.  Über die transpassive Auflösung von Nickel‐Basis‐Legierungen und Edelstählen in sauerstoff‐ und chloridhaltigem Hochtemperatur‐Wasser , 1997 .

[24]  M. Delville,et al.  Development of a model for the anodic behavior of T60 titanium in chlorinated and oxygenated aqueous media. Application to the specific conditions of hydrothermal oxidation (1 MPa , 2003 .

[25]  Jung,et al.  Chemistry in Supercritical Water. , 1999, Angewandte Chemie.

[26]  S. Iimura,et al.  Corrosion Behavior of Several Commercial Alloys in Supercritical Water Including High Concentration of Chloride Ions , 2001 .

[27]  Rolf Janssen,et al.  Corrosion screening tests of high-performance ceramics in supercritical water containing oxygen and hydrochloric acid , 1997 .

[28]  G. W. Morey The solubility of solids in gases , 1957 .

[29]  R. M. Latanision,et al.  Corrosion science, corrosion engineering, and advanced technologies , 1995 .

[30]  Fang Zhen,et al.  Cellulose decomposition in hot-compressed water with alkali or nickel catalyst , 1998 .

[31]  D. Macdonald On the modeling of stress corrosion cracking in iron and nickel base alloys in high temperature aqueous environments , 1996 .

[32]  C. Friedrich,et al.  Corrosion screening tests with Ni-base alloys in supercritical water containing hydrochloric acid and oxygen , 1996 .

[33]  E. Dinjus,et al.  Change of corrosion phenomena in sub- and supercritical water , 1997 .

[34]  S. D. Cramer,et al.  Materials of Construction for High-Salinity Geothermal Brines , 1991 .

[35]  P. A. Marrone,et al.  Corrosion Mitigation in SCWO Systems for Hazardous Waste Disposal , 1998 .

[36]  Pawel Plucinski,et al.  Wet air oxidation: a review of process technologies and aspects in reactor design , 1999 .

[37]  D. Harradine,et al.  Oxidation Chemistry of Energetic Materials in Supercritical Water , 1993 .

[38]  G. Was,et al.  Microstructural and microchemical mechanisms controlling intergranular stress corrosion cracking in light-water-reactor systems , 1994 .

[39]  P. E. Manning,et al.  The effect of temperature (25°–289°C) on pit initiation in single phase and duplex 304L stainless steels in 100 ppm Cl− solution , 1980 .

[40]  H. Yashiro,et al.  Critical Pitting Potentials for Type 304 Stainless Steel in High-Temperature Chloride Solutions , 1996 .

[41]  D. Macdonald,et al.  Corrosion testing and prediction in SCWO environments , 1995 .

[42]  R. Rapp Fundamental aspects of high-temperature corrosion , 1993 .

[43]  N. Saito,et al.  Corrosion Behavior of Metals for SCWO Reactors for Organic Waste Processing Plants , 2001 .

[44]  Z. Alwani,et al.  Druckeinfluß auf die Entmischung flüssiger Systeme VI. Phasengleichgewichte und kritische Erscheinungen im System Benzol—H2O zwischen 250 und 368°C bis 3700 bar , 1967, Berichte der Bunsengesellschaft für physikalische Chemie.

[45]  J. Mankowski,et al.  Pitting Corrosion of Inconel 600 in High Temperature Chloride Solution under Controlled Hydrodynamic Conditions , 1985 .

[46]  Noam Eliaz,et al.  An Overview of the Current Understanding of Corrosion in SCWO Systems for the Destruction of Hazardous Waste Products , 2001 .

[47]  G. Bondarenko,et al.  In situ Raman spectroscopic study of sulfur-saturated water at 1000 bar between 200 and 500°C , 1997 .

[48]  Jyeshtharaj B. Joshi,et al.  Wet air oxidation , 1995 .

[49]  E. U. Franck Physicochemical Properties of Supercritical Solvents (Invited Lecture) , 1984 .

[50]  Yoshiaki Oka,et al.  Core design of a high-temperature fast reactor cooled by supercritical light water , 1999 .

[51]  A. Rahmel,et al.  The influence of gaseous impurities in air on the high temperature corrosion of coated and uncoated nickel-based superalloys , 1995 .

[52]  J. Klöwer,et al.  Metal dusting of nickel-based alloys , 1998 .

[53]  Alfons Baiker,et al.  Supercritical Fluids in Heterogeneous Catalysis. , 1999, Chemical reviews.

[54]  P. Andresen Effects of Temperature on Crack Growth Rate in Sensitized Type 304 Stainless Steel and Alloy 600 , 1993 .

[55]  C. H. Shen,et al.  A mechanism for hydrogen-induced intergranular stress corrosion cracking in alloy 600 , 1990 .

[56]  M. Wagner,et al.  Werkstoffe für SCWO‐Prozesse zur Oxidation von chlorhaltigen Schadstoffen in überkritischem Wasser , 1999 .

[57]  N. Eliaz,et al.  Assessing Degradation Mechanisms in Supercritical Water Oxidation Systems , 2001 .

[58]  E. Dinjus,et al.  The corrosion of alloy 625 (NiCr22Mo9Nb; 2.4856) in high-temperature, high-pressure aqueous solutions of phosphoric acid and oxygen. Corrosion at sub- and supercritical temperatures , 1998 .

[59]  D. Macdonald,et al.  Probing Corrosion Activity in High Subcritical and Supercritical Water Through Electrochemical Noise Analysis , 1994 .

[60]  N. Boukis,et al.  Corrosion phenomena on alloy 625 in aqueous solutions containing hydrochloric acid and oxygen under subcritical and supercritical conditions , 1998 .

[61]  Jefferson W. Tester,et al.  Hydrolysis and Oxidation in Subcritical and Supercritical Water: Connecting Process Engineering Science to Molecular Interactions , 1999 .

[62]  J. Robertson The mechanism of high temperature aqueous corrosion of steel , 1989 .

[63]  M. Schütze Mechanical properties of oxide scales , 1995 .

[64]  J. F. Connolly,et al.  Solubility of Hydrocarbons in Water Near the Critical Solution Temperatures. , 1966 .

[65]  Z. Szklarska‐Śmiałowska,et al.  Effects of Cl− Concentration and Temperature on Pitting of AISI 304 Stainless Steel , 1988 .

[66]  R. L. Cowan,et al.  Intergranular Corrosion of Iron-Nickel-Chromium Alloys , 1973 .

[67]  Z. Szklarska‐Śmiałowska,et al.  Pitting Corrosion of Inconel 600 in High-Temperature Water Containing CuCl2 , 1985 .

[68]  C. Wai,et al.  Thermodynamic Analysis of Corrosion of Iron Alloys in Supercritical Water , 1989 .

[69]  J. Fulton,et al.  Unusual dysprosium ceramic nano-fiber growth in a supercritical aqueous solution , 2000 .

[70]  A. Rabenau Die Rolle der Hydrothermalsynthese in der präparativen Chemie , 1985 .

[71]  Rolf Janssen,et al.  Corrosion of Zirconia Ceramics in Acidic Solutions at High Pressures and Temperatures , 1997 .

[72]  O. Wachter,et al.  Experiences with austenitic steels in boiling water reactors , 1997 .

[73]  C. Briant,et al.  Intergranularfailure in steel: the role of grain-boundary composition , 1978 .

[74]  B. Stellwag Pitting Resistance of Alloy 800 as a Function of Temperature and Prefilming in High-Temperature Water , 1997 .

[75]  R. Smith,et al.  Recovery of metals from simulated high-level liquid waste with hydrothermal crystallization , 1997 .

[76]  N. Sato Toward a More Fundermental Understanding of Corrosion Processes , 1990 .

[77]  J. Rameau,et al.  Behaviour of Hastelloy C22 steel in sulphate solutions at pH 3 and low temperatures , 1996, Journal of Materials Science.

[78]  M. G. Alvarez,et al.  The effect of temperature on the passive film properties and pitting behaviour of a FeCrNi alloy , 1996 .

[79]  R. Biernat,et al.  High temperature potential/ph diagrams for the sulphur-water system , 1969 .

[80]  E. Dinjus,et al.  The corrosion of nickel-base alloy 625 in sub- and supercritical aqueous solutions of oxygen: A long time study , 1999 .

[81]  N. Hara,et al.  Corrosion Behavior of Constituent Metals of Stainless Alloys in SCWO Environments , 2001 .

[82]  Michael Jerry Antal,et al.  Carbon-Catalyzed Gasification of Organic Feedstocks in Supercritical Water† , 1996 .

[83]  W. Friend Corrosion of Nickel and Nickel‐Base Alloys , 1980 .

[84]  H. A. Pray,et al.  Solubility of Hydrogen, Oxygen, Nitrogen, and Helium in Water at Elevated Temperatures , 1952 .

[85]  L. Stenmark,et al.  TREATMENT OF DIFFERENT WASTES BY SUPERCRITICAL WATER OXIDATION , 2001 .

[86]  G. Was Grain-boundary chemistry and intergranular fracture in austenitic nickel-base alloys - a review. , 1989 .

[87]  Walter Bogaerts,et al.  Empirical Learning Investigations of the Stress Corrosion Cracking of Austenitic Stainless Steels in High-Temperature Aqueous Environments , 1997 .

[88]  T. Davies,et al.  Preparation and Properties of Barium Mono- and Hexaaluminate , 1998 .

[89]  C. Briant The Effects of Sulfur and Phosphorus on the Intergranular Corrosion of 304 Stainless Steel , 1980 .

[90]  E. Dinjus,et al.  The corrosion behaviour of nickel‐base alloy 625 (NiCr22Mo9Nb; 2.4856) and ceria stabilized tetragonal zirconia polycrystal (Ce‐TZP) against oxidizing aqueous solutions of hydrofluoric acid (HF), hydrobromic acid (HBr), and hydriodic acid (HI) at sub‐ and supercritical temperatures , 1999 .

[91]  E. U. Franck,et al.  The system hydrogen ‐ water up to 440°C and 2500 bar pressure , 1981 .

[92]  P. Cummings,et al.  Molecular Simulation and Modeling of Supercritical Water and Aqueous Solutions , 2000 .

[93]  A. Haute,et al.  Relative critical potentials for pitting corrosion of 304 stainless steel, incoloy 800 and inconel 600 in alkaline high-temperature aqueous solutions , 1983 .

[94]  K. Arai,et al.  Importance of phase equilibria for understanding supercritical fluid environments , 1999 .

[95]  P. Marcus,et al.  Corrosion Mechanisms in Theory and Practice , 1995 .

[96]  H. Strehblow Breakdown of passivity and localized corrosion: Theoretical concepts and fundamental experimental results , 1984 .

[97]  C. Kaul,et al.  Korrosionsverhalten anorganischer Materialien in nah- und überkritischen wäßrigen Lösungen , 1999 .

[98]  R. Latanision,et al.  Evaluating Stress Corrosion And Corrosion Aspects In Supercritical Water Oxidation Systems For The Destruction Of Hazardous Waste , 1997 .

[99]  E. U. Franck Physicochemical properties of supercritical solvents , 1984 .

[100]  V. Zilberstein,et al.  Evaluation of materials performance in a supercritical wet oxidation system , 1995 .

[101]  N. Sato The Stability of Pitting Dissolution of Metals in Aqueous Solution , 1982 .

[102]  R. Latanision,et al.  Corrosion resistance of stainless steels in chloride containing supercritical water oxidation system , 2000 .

[103]  Hojong Kim,et al.  An Examination of the Corrosion Phenomena of Potential Constructional Materials for SCWO System Fabrication , 2002 .

[104]  Stephen D. Cramer,et al.  The Solubility of Oxygen in Brines from 0 to 300 °C , 1980 .

[105]  G. Okamoto Passive film of 18-8 stainless steel structure and its function , 1973 .

[106]  W. Giggenbach,et al.  Hydrogen sulphide ionization and sulphur hydrolysis in high temperature solution , 1971 .

[107]  H. -. Wang,et al.  Oxidation of 2,4-dichlorophenol in supercritical water , 1998 .

[108]  T. Adschiri,et al.  Effects of Oxygen Concentration on Corrosion Behavior of Alloys in Acidic Supercritical Water , 2002 .

[109]  Fluids at high pressures and temperatures , 1987 .

[110]  R. M. Izatt,et al.  THERMODYNAMIC DATA FOR LIGAND INTERACTION WITH PROTONS AND METAL IONS IN AQUEOUS SOLUTIONS AT HIGH TEMPERATURES , 1994 .

[111]  S. Iimura,et al.  Effect of Cr and Mo Contents on the Corrosion Properties of Ni-Base Alloys in a Supercritical Water Including Chloride , 2002 .

[112]  Eckhard Dinjus,et al.  An assessment of supercritical water oxidation (SCWO). Existing problems, possible solutions and new reactor concepts , 2001 .

[113]  D. Matson,et al.  Supercritical Fluid Technologies for Ceramic-Processing Applications , 1989 .

[114]  Masahiro Yoshimura,et al.  Formation of Ultrafine Tetragonal ZrO2 Powder Under Hydrothermal Conditions , 1983 .

[115]  G. Frankel Pitting Corrosion of Metals A Review of the Critical Factors , 1998 .

[116]  R. Eldik,et al.  Chemistry under extreme or non-classical conditions , 1996 .

[117]  P. Jessop,et al.  Homogeneous catalysis in supercritical fluids. , 1999, Science.

[118]  S. Oana,et al.  Sulfur isotopic fractionation between sulfur and sulfuric acid in the hydrothermal solution of sulfur dioxide , 1966 .

[119]  Jawwad A. Darr,et al.  New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids. , 1999, Chemical reviews.

[120]  R. Latanision,et al.  An Overview of Corrosion Phenomena in SCWO Systems for Hazardous Waste Destruction , 2000 .

[121]  J. Tester,et al.  Corrosion Mechanisms of Alloy N10276 in Hydrothermal HCL Solutions: Failure Analysis and Exposure Studies , 2001 .

[122]  Russel H. Jones,et al.  Stress-corrosion cracking , 1992 .

[123]  W. L. Marshall,et al.  Electrical conductances and ionization constants of salts, acids, and bases in supercritical aqueous fluids; I, Hydrochloric acid from 100 degrees to 700 degrees C and at pressures to 4000 bars , 1984 .

[124]  S. Bruemmer Grain Boundary Chemistry and Intergranular Failure of Austenitic Stainless Steels , 1991 .

[125]  C. Friedrich,et al.  Corrosion screening tests in supercritical water containing hydrochloric acid and oxygen , 1997 .

[126]  M. Siskin,et al.  Classical Organic Reactions in Pure Superheated Water , 1994 .

[127]  Nikolaos Boukis,et al.  Corrosion of alloy 625 in aqueous solutions containing chloride and oxygen , 1998 .

[128]  R. Newman Stress-Corrosion Cracking Mechanisms , 2002 .

[129]  C. Friedrich,et al.  Titanium as reactor material for SCWO applications. First experimental results , 1998 .

[130]  F. Luck,et al.  Wet air oxidation: past, present and future , 1999 .

[131]  R. Cooks,et al.  Ion trap mass spectrometry , 1991 .

[132]  J. Hausselt,et al.  Corrosion of high-temperature alloys in chloride-containing supercritical water oxidation systems , 1999 .

[133]  Ronald M. Latanision,et al.  Interpretation of the Rationale for Feed Modification in SCWO Systems , 1996 .

[134]  M. Renner,et al.  Pitting, Crevice and stress corrosion resistance of high chromium und molybdenum alloy stainless steels , 1984 .

[135]  Yoshiaki Oka,et al.  Conceptual design of a high temperature power reactor cooled and moderated by supercritical light water , 1998 .

[136]  H. Hänninen Influence of metallurgical variables on environment-sensitive cracking of austenitic alloys , 1979 .

[137]  P. Marcus,et al.  Potential pH Diagrams for Sulfur and Oxygen Adsorbed on Nickel in Water at 25 and 300°C , 1993 .

[138]  E. Dinjus,et al.  Factors controlling corrosion in high-temperature aqueous solutions: a contribution to the dissociation and solubility data influencing corrosion processes , 1999 .

[139]  J. Hausselt,et al.  Corrosion of Nickel Based Alloy G-30 Between 100 and 420ºC, pH Values From 2 to 6 and Pressures Ranging From 250-480 Bar Under Conditions of Supercritical Water Oxidation , 2001 .

[140]  J. Hickling,et al.  Electrochemical Investigations of the Resistance of Inconel 600, Incoloy 800, and Type 347 Stainless Steel to Pitting Corrosion in Faulted PWR Secondary Water at 150 to 250 C , 1981 .

[141]  E. Lunarska,et al.  Effect of Hydrogen on the Intergranular Stress Corrosion Cracking of Alloy 600 in High Temperature Aqueous Environments , 1987 .

[142]  H. Copson,et al.  Effect of Some Environmental Conditions on Stress Corrosion Behavior of Ni-Cr-Fe Alloys in Pressurized Water , 1968 .

[143]  A. Simões,et al.  Passivation and Localized Corrosion , 1991 .

[144]  Nikolaos Boukis,et al.  Review of the Corrosion of Nickel-Based Alloys and Stainless Steels in Strongly Oxidizing Pressurized High-Temperature Solutions at Subcritical and Supercritical Temperatures , 2000 .

[145]  E. Dinjus,et al.  Corrosion of Alloy 625 in High-Temperature, High-Pressure Sulfate Solutions , 1998 .

[146]  G. Schneider,et al.  Fluide Mischsysteme unter hohem Druck. Phasengleichgewichte und kritische Erscheinungen in den binären Systemen Cyclohexan-H2O, n-Heptan-H2O, Biphenyl-H2O und Benzol-D2O bis 420°C und 3000 bar , 1970 .

[147]  D. Delafosse,et al.  Stress Corrosion Cracking of Nickel Base Superalloys in Aerated Supercritical Water , 2001 .

[148]  E. Dinjus,et al.  The Corrosion of Niobium in Oxidizing Sub- and Supercritical Aqueous Solutions of HCl and H2SO4 , 1999 .

[149]  Raul B. Rebak,et al.  The mechanism of stress corrosion cracking of alloy 600 in high temperature water , 1996 .

[150]  M. Villegas,et al.  Corrosion behaviour of Alloy 800 in high temperature aqueous solutions: Electrochemical studies , 1996 .

[151]  R. J. Scoular,et al.  Localized Corrosion of Molybdenum-Bearing Nickel Alloys in Chloride Solutions , 1988 .

[152]  M. J. Drews,et al.  The Corrosion of Sol−Gel-Coated Type 316 SS in Chlorinated SC Water , 2000 .

[153]  Phillip E. Savage,et al.  Organic Chemical Reactions in Supercritical Water. , 1999, Chemical reviews.

[154]  K. Arai,et al.  Relationship between Corrosion Rate and Metal Oxide Solubility in Supercritical Water , 2002 .

[155]  M. J. Dietrich,et al.  Wet air oxidation of hazardous organics in wastewater , 1985 .

[156]  E. Dinjus,et al.  The Corrosion of Nickel–Base Alloy 625 in Sub- and Supercritical Aqueous Solutions of HNO3 in the Presence of Oxygen , 1999 .

[157]  P. Elliott,et al.  High Temperature Alloy Corrosion by Halogens , 1985 .

[158]  Kunio Arai,et al.  Cellulose hydrolysis in subcritical and supercritical water , 1998 .

[159]  D. Macdonald,et al.  Stress Corrosion Cracking of Sensitized Type 304 Stainless Steel in High Temperature Chloride Solutions , 1981 .