Nominal String Diagrams

We introduce nominal string diagrams as, string diagrams internal in the category of nominal sets. This requires us to take nominal sets as a monoidal category, not with the cartesian product, but with the separated product. To this end, we develop the beginnings of a theory of monoidal categories internal in a symmetric monoidal category. As an instance, we obtain a notion of a nominal PROP as a PROP internal in nominal sets. A 2-dimensional calculus of simultaneous substitutions is an application.

[1]  Alessandra Palmigiano,et al.  Multi-type display calculus for dynamic epistemic logic , 2016, J. Log. Comput..

[2]  Filippo Bonchi,et al.  The Calculus of Signal Flow Diagrams I: Linear relations on streams , 2017, Inf. Comput..

[3]  Andrew M. Pitts,et al.  Nominal Sets: Names and Symmetry in Computer Science , 2013 .

[4]  David J. Pym,et al.  The semantics of BI and resource tableaux , 2005, Mathematical Structures in Computer Science.

[5]  S. Lane Categories for the Working Mathematician , 1971 .

[6]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[7]  Vaughan R. Pratt,et al.  Modeling concurrency with partial orders , 1986, International Journal of Parallel Programming.

[8]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[9]  Pierre-Louis Curien,et al.  Coherent Presentations of Monoidal Categories , 2017, Log. Methods Comput. Sci..

[10]  Peter W. O'Hearn,et al.  The Logic of Bunched Implications , 1999, Bulletin of Symbolic Logic.

[11]  Apostolos Tzimoulis,et al.  Algebraic and Proof-Theoretic Foundations of the Logics for Social Behaviour , 2018 .

[12]  Filippo Bonchi Interacting Hopf Algebras: the Theory of Linear Systems (text not included) , 2019, ICTCS.

[13]  Dan R. Ghica,et al.  A structural and nominal syntax for diagrams , 2017, QPL.

[14]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[15]  Georg Struth,et al.  A Program Construction and Verification Tool for Separation Logic , 2015, MPC.

[16]  Fabio Gadducci,et al.  Rewriting modulo symmetric monoidal structure , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[17]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[18]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.