SI traceability: Current status and future trends for forces below 10 microNewtons

Abstract Measurements related to nano- and micro-scale science, technology, and manufacturing are pushing the limits of detectable mechanical, electrical, and chemical quantities to ever smaller values, raising questions about traceability on such scales. The case in small force measurement is illustrative. At present, the mechanical unit of force is linked to the International Prototype Kilogram, or a deadweight force of nearly 10 N. Although known with exquisite accuracy on this scale, such a mass-based force standard is of little use to investigators and manufacturers using instruments that can determine quantities twelve orders of magnitude smaller. Recognizing this situation, the world congress of the International Measurement Confederation (IMEKO) convened a round table of researchers from National Metrology Institutes representing the US, Europe, and Asia to provide an overview of the emerging field of low-force metrology. This paper captures the information shared in that round table and amplifies on its content.

[1]  S. Dietrich,et al.  Direct measurement of critical Casimir forces , 2008, Nature.

[2]  Byoung-Il Kim,et al.  Piezoresistive Cantilever for Accurate Force Measurements at the Micro/Nano-size Level , 2008 .

[3]  Francesc Pérez-Murano,et al.  Piezoresistive cantilevers in a commercial CMOS technology for intermolecular force detection , 2006 .

[4]  Liam Blunt,et al.  Recent advances in traceable nanoscale dimension and force metrology in the UK , 2006 .

[5]  A. Kapitulnik,et al.  Feedback Control and Characterization of a Microcantilever Using Optical Radiation Pressure , 2006 .

[6]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[7]  Jon R. Pratt,et al.  SI Realization of Small Forces Using an Electrostatic Force Balance | NIST , 2006 .

[8]  T. Kenny,et al.  High-sensitivity piezoresistive cantilevers under 1000 Å thick , 1999 .

[9]  John A Kramar,et al.  SI traceable calibration of an instrumented indentation sensor spring constant using electrostatic force. , 2008, The Review of scientific instruments.

[10]  Dirk Bouwmeester,et al.  Sub-kelvin optical cooling of a micromechanical resonator , 2006, Nature.

[11]  Derek N. Fuller,et al.  DNA as a metrology standard for length and force measurements with optical tweezers. , 2006, Biophysical journal.

[12]  Jon R. Pratt,et al.  A Piezoresistive Cantilever Force Sensor for Direct AFM Force Calibration , 2007 .

[13]  Richard K. Leach,et al.  Review of low force transfer artefact technologies. , 2008 .

[14]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[15]  Lutz Doering,et al.  Piezoresistive cantilever as portable micro force calibration standard , 2003 .

[16]  Seung Woo Han,et al.  Force-Calibrated AFM for Mechanical Test of Freestanding Thin Films , 2005 .

[17]  John Hedley,et al.  Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI , 2003, Nanotechnology.

[18]  Richard S Gates,et al.  Precise atomic force microscope cantilever spring constant calibration using a reference cantilever array. , 2007, The Review of scientific instruments.

[19]  David A. Kidwell,et al.  Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy , 1994 .

[20]  Yusaku Fujii Method of generating and measuring static small force using down-slope component of gravity. , 2007, The Review of scientific instruments.

[21]  Bryan Kibble,et al.  An initial measurement of Planck's constant using the NPL Mark II watt balance , 2007 .

[22]  Mark W. Rutland,et al.  Dynamic Surface Force Measurement. 2. Friction and the Atomic Force Microscope , 1998 .

[23]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[24]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[25]  Jon R. Pratt,et al.  Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy. , 2009, The Review of scientific instruments.

[26]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[27]  Martin P. Seah,et al.  The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis , 2005 .

[28]  S. Piccarolo,et al.  Nanoscale Mechanical Characterization of Polymers by AFM Nanoindentations: Critical Approach to the Elastic Characterization , 2006 .

[29]  A. Mehta,et al.  Single-molecule biomechanics with optical methods. , 1999, Science.

[30]  C. Quate,et al.  Atomic resolution with an atomic force microscope using piezoresistive detection , 1993 .

[31]  Lutz Doering,et al.  Silicon cantilever sensor for micro-/nanoscale dimension and force metrology , 2008 .

[32]  Alan G. R. Evans,et al.  Fabrication of improved piezoresistive silicon cantilever probes for the atomic force microscope , 1997 .

[33]  Jon R. Pratt,et al.  Precision and accuracy of thermal calibration of atomic force microscopy cantilevers , 2006 .

[34]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[35]  Edwin R. Williams,et al.  Accurate Measurement of the Planck Constant , 1998 .

[36]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[37]  Peter Vettiger,et al.  Microfabricated ultrasensitive piezoresistive cantilevers for torque magnetometry , 1999 .

[38]  Benjamin Ohler,et al.  Cantilever spring constant calibration using laser Doppler vibrometry. , 2007, The Review of scientific instruments.

[39]  Mark A. Locascio,et al.  Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. , 2008, Nature nanotechnology.

[40]  V. Nesterov,et al.  Facility and methods for the measurement of micro and nano forces in the range below 10?5 N with a resolution of 10?12 N (development concept) , 2007 .

[41]  Eric Stach,et al.  Nanomaterials: nanotubes reveal their true strength. , 2008, Nature nanotechnology.

[42]  H. B. Chan,et al.  Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. , 2008, Physical review letters.

[43]  Yon-Kyu Park,et al.  Quantum-based mechanical force realization in piconewton range , 2007 .

[44]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[45]  Richard K. Leach,et al.  Comparison of NIST SI Force Scale to NPL SI Mass Scale | NIST , 2008 .

[46]  Jon R. Pratt,et al.  Prototype cantilevers for SI-traceable nanonewton force calibration , 2006 .

[47]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[48]  Teodor Gotszalk,et al.  Fabrication of multipurpose piezoresistive Wheatstone bridge cantilevers with conductive microtips for electrostatic and scanning capacitance microscopy , 1998 .

[49]  Thomas W. Kenny,et al.  Piezoresistive cantilevers and measurement system for characterizing low force electrical contacts , 2003 .

[50]  R. Mahaffy,et al.  Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. , 2004, Biophysical journal.

[51]  Matthias Rief,et al.  Single-molecule dynamics of mechanical coiled-coil unzipping. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[52]  Mark W. Rutland,et al.  A novel technique for the in situ calibration and measurement of friction with the atomic force microscope , 2005 .

[53]  Mark W. Rutland,et al.  Erratum: “A novel technique for the in situ calibration and measurement of friction with the atomic force microscope” [Rev. Sci. Instrum. 76, 083710 (2005)] , 2006 .

[54]  Daniel J Müller,et al.  Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. , 2008, Nature nanotechnology.

[55]  Thomas Thundat,et al.  Friction effects in the deflection of atomic force microscope cantilevers , 1994 .

[56]  T. Funck,et al.  Realization of the SI Unit Volt by Means of a Voltage Balance , 1986 .

[57]  Tilman E. Schäffer,et al.  Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants , 2006 .

[58]  Jerome Mertz,et al.  Regulation of a microcantilever response by force feedback , 1993 .

[59]  J. Rao,et al.  Nanomechanical analysis of cells from cancer patients. , 2007, Nature nanotechnology.

[60]  Yon-Kyu Park,et al.  Atomic force microscope cantilever calibration device for quantified force metrology at micro- or nano-scale regime: the nano force calibrator (NFC) , 2006 .

[61]  S. Okuma,et al.  A method for determining the spring constant of cantilevers for atomic force microscopy , 1996 .

[62]  Andreas Engel,et al.  Friction effects on force measurements with an atomic force microscope , 1993 .

[63]  J. Kramar,et al.  Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer standard. , 2007, The Review of scientific instruments.

[64]  Sverre Myhra,et al.  Determination of the spring constants of probes for force microscopy/spectroscopy , 1996 .

[65]  Yasunaga Mitsuya,et al.  Monolithically fabricated double-ended tuning-fork-based force sensor , 2006 .

[66]  John Hedley,et al.  Quantitative analytical atomic force microscopy: a cantilever reference device for easy and accurate AFM spring-constant calibration , 2004 .

[67]  W. Knauss,et al.  A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy , 2002 .

[68]  Seton Bennett,et al.  Modernizing the SI: towards an improved, accessible and enduring system , 2007 .

[69]  John Hedley,et al.  Accurate force measurement in the atomic force microscope: a microfabricated array of reference springs for easy cantilever calibration , 2003 .

[70]  Sheau-Shi Pan,et al.  Development of nanonewton force standard based on a torsion pendulum , 2010, CPEM 2010.

[71]  Jon R. Pratt,et al.  Review of SI traceable force metrology for instrumented indentation and atomic force microscopy , 2005 .

[72]  Jeremy J Mao,et al.  Investigation of nano-mechanical properties of annulus fibrosus using atomic force microscopy. , 2008, Micron.

[73]  J. Lawall,et al.  Michelson Interferometry With 10 PM Accuracy , 2000 .

[74]  C Zhu,et al.  Cell mechanics: mechanical response, cell adhesion, and molecular deformation. , 2000, Annual review of biomedical engineering.

[75]  Uwe Brand,et al.  A new facility to realize a nanonewton force standard based on electrostatic methods , 2009 .

[76]  Rashid Bashir,et al.  On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications , 2000 .

[77]  Jon R. Pratt,et al.  The NIST microforce realization and measurement project , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[78]  Bryan Kibble,et al.  A Realization of the SI Watt by the NPL Moving-coil Balance , 1990 .

[79]  H. Gaub,et al.  Intermolecular forces and energies between ligands and receptors. , 1994, Science.

[80]  Manfred Radmacher,et al.  Measuring the elastic properties of living cells by the atomic force microscope. , 2002, Methods in cell biology.

[81]  Tanguy Madec,et al.  Micro-mass standards to calibrate the sensitivity of mass comparators , 2007 .

[82]  Yon-Kyu Park,et al.  SI-traceable determination of spring constants of various atomic force microscope cantilevers with a small uncertainty of 1% , 2007 .