Decomposition algorithms for submodular optimization with applications to parallel machine scheduling with controllable processing times

In this paper we present a decomposition algorithm for maximizing a linear function over a submodular polyhedron intersected with a box. Apart from this contribution to submodular optimization, our results extend the toolkit available in deterministic machine scheduling with controllable processing times. We demonstrate how this method can be applied to developing fast algorithms for minimizing total compression cost for preemptive schedules on parallel machines with respect to given release dates and a common deadline. Obtained scheduling algorithms are faster and easier to justify than those previously known in the scheduling literature.

[1]  Robert McNaughton,et al.  Scheduling with Deadlines and Loss Functions , 1959 .

[2]  D. Teichroew,et al.  Optimal Short Term Financing Decision , 1965 .

[3]  Teofilo F. Gonzalez,et al.  Preemptive Scheduling of Uniform Processor Systems , 1978, JACM.

[4]  Sartaj Sahni,et al.  Preemptive Scheduling with Due Dates , 1979, Oper. Res..

[5]  Satoru Fujishige,et al.  Lexicographically Optimal Base of a Polymatroid with Respect to a Weight Vector , 1980, Math. Oper. Res..

[6]  Sartaj Sahni,et al.  Scheduling Independent Tasks with Due Times on a Uniform Processor System , 1980, JACM.

[7]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[8]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[9]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[10]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[11]  Eugeniusz Nowicki,et al.  A survey of results for sequencing problems with controllable processing times , 1990, Discret. Appl. Math..

[12]  H. Groenevelt Two algorithms for maximizing a separable concave function over a polymatroid feasible region , 1991 .

[13]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[14]  Eugene L. Lawler,et al.  Chapter 9 Sequencing and scheduling: Algorithms and complexity , 1993, Logistics of Production and Inventory.

[15]  Yen-Liang Chen Scheduling jobs to minimize total cost , 1994 .

[16]  Graham K. Rand,et al.  Logistics of Production and Inventory , 1995 .

[17]  Eugeniusz Nowicki,et al.  A Bicriterion Approach to Preemptive Scheduling of Parallel Machines with Controllable Job Processing Times , 1995, Discret. Appl. Math..

[18]  Peter Brucker,et al.  Scheduling Algorithms , 1995 .

[19]  S. Thomas McCormick,et al.  Fast algorithms for parametric scheduling come from extensions to parametric maximum flow , 1996, STOC '96.

[20]  Adam Janiak,et al.  Single machine scheduling subject to deadlines and resource dependent processing times , 1996 .

[21]  Naoki Katoh,et al.  Resource Allocation Problems , 1998 .

[22]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[23]  S. Thomas McCormick Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric Maximum Flow , 1999, Oper. Res..

[24]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[25]  Satoru Iwata,et al.  A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions , 2000, STOC '00.

[26]  Klaus Jansen,et al.  Parallel Machine Scheduling Problems with Controllable Processing Times , 2000, ICALP Satellite Workshops.

[27]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[28]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[29]  Joseph Y.-T. Leung,et al.  Handbook of Scheduling: Algorithms, Models, and Performance Analysis , 2004 .

[30]  Vitaly A. Strusevich,et al.  Pre-Emptive Scheduling Problems with Controllable Processing Times , 2005, J. Sched..

[31]  Vitaly A. Strusevich,et al.  Preemptive Scheduling on Uniform Parallel Machines with Controllable Job Processing Times , 2008, Algorithmica.

[32]  Dvir Shabtay,et al.  A survey of scheduling with controllable processing times , 2007, Discret. Appl. Math..

[33]  Vitaly A. Strusevich,et al.  Fast Divide-and-Conquer Algorithms for Preemptive Scheduling Problems with Controllable Processing Times - A Polymatroid Optimization Approach , 2008, ESA.

[34]  Vitaly A. Strusevich,et al.  Single Machine Scheduling with Controllable Processing Times by submodular Optimization , 2009, Int. J. Found. Comput. Sci..

[35]  Vitaly A. Strusevich,et al.  A Submodular Optimization Approach to Bicriteria Scheduling Problems with Controllable Processing Times on Parallel Machines , 2013, SIAM J. Discret. Math..