The Fréchet distribution: Estimation and application - An overview
暂无分享,去创建一个
Sanku Dey | Francisco Louzada | Pedro Luiz Ramos | Eduardo Ramos | F. Louzada | P. Ramos | E. Ramos | S. Dey
[1] Devendra Kumar,et al. Exponentiated Chen distribution: Properties and estimation , 2017, Commun. Stat. Simul. Comput..
[2] T. Wesche,et al. Status of Instream Flow Legislation and Practices in North America , 1989 .
[3] Bo Ranneby,et al. The Maximum Spacing Method. An Estimation Method Related to the Maximum Likelihood Method , 2016 .
[4] Kevin P. Murphy,et al. Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.
[5] Mohammad Z. Raqab,et al. Generalized Rayleigh Distribution , 2011, International Encyclopedia of Statistical Science.
[6] Jorge Alberto Achcar,et al. Bayesian analysis of the generalized gamma distribution using non-informative priors , 2017 .
[7] F. Louzada,et al. The Long Term Fr\'echet distribution: Estimation, Properties and its Application , 2017, 1709.07593.
[8] John H. K. Kao. A Graphical Estimation of Mixed Weibull Parameters in Life-Testing of Electron Tubes , 1959 .
[9] Donald L. Tennant. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources , 1976 .
[10] COMPARISON OF ESTIMATION METHODS FOR INVERSE WEIBULL PARAMETERS , 2017 .
[11] Juliette Gardner. Genesis , 1985 .
[12] John H. K. Kao. Computer Methods for Estimating Weibull Parameters in Reliability Studies , 1958 .
[13] Debasis Kundu,et al. Generalized exponential distribution: different method of estimations , 2001 .
[14] R. Calabria,et al. Confidence limits for reliability and tolerance limits in the inverse Weibull distribution , 1989 .
[15] A. Jenkinson. The frequency distribution of the annual maximum (or minimum) values of meteorological elements , 1955 .
[16] Debasis Kundu,et al. Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data , 2010, Comput. Stat. Data Anal..
[17] John Geweke,et al. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .
[18] G. Casella,et al. The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .
[19] S. Nadarajah,et al. Extreme Value Distributions: Theory and Applications , 2000 .
[20] Keewhan Choi,et al. An Estimation Procedure for Mixtures of Distributions , 1968 .
[21] Order statistics from inverse Weibull distribution and characterizations , 2015 .
[22] Debasis Kundu,et al. Generalized Rayleigh distribution: different methods of estimations , 2005, Comput. Stat. Data Anal..
[23] E. Kay,et al. Methods for statistical analysis of reliability and life data , 1974 .
[24] J. Hosking. L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .
[25] Yincai Tang,et al. Analysis of Frechet Distribution Using Reference Priors , 2015 .
[26] Russell C. H. Cheng,et al. Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .
[27] F. Louzada,et al. Poisson–exponential distribution: different methods of estimation , 2018 .
[28] Creasy Problem,et al. Reference Posterior Distributions for Bayesian Inference , 1979 .
[29] J. Bernardo. Reference Analysis , 2005 .
[30] F. Louzada,et al. The generalized weighted Lindley distribution: Properties, estimation, and applications , 2016, 1601.07410.
[31] H. Jeffreys. An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[32] Sajid Ali,et al. Two-parameter Maxwell distribution: Properties and different methods of estimation , 2016 .
[33] Francisco Louzada,et al. Comparison of estimation methods for the parameters of the weighted Lindley distribution , 2013, Appl. Math. Comput..
[34] James O. Berger,et al. Overall Objective Priors , 2015, 1504.02689.
[35] M. Maswadah,et al. Conditional confidence interval estimation for the inverse weibull distribution based on censored generalized order statistics , 2003 .
[36] S. M. Hoseini,et al. Comparison of estimation methods for the Weibull distribution , 2013 .
[37] Saikat Mukherjee,et al. Statistical properties and different methods of estimation of transmuted Rayleigh distribution , 2017 .
[38] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[39] Mohammad Z. Raqab,et al. Estimation of the generalized logistic distribution parameters: Comparative study , 2009 .
[40] Debasis Kundu,et al. Two-Parameter Rayleigh Distribution: Different Methods of Estimation , 2014 .
[41] R. Calabria,et al. Bayes 2-sample prediction for the inverse weibull distribution , 1994 .
[42] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[43] L. Wasserman,et al. The Selection of Prior Distributions by Formal Rules , 1996 .
[44] Dennis D. Boos,et al. Minimum Distance Estimators for Location and Goodness of Fit , 1981 .