Multipole moments of general ellipsoids with two polarized domains

The multipole moments of a homogeneously polarized ellipsoid and a homogeneously charged ellipsoidal disc are calculated. The resulting hypergeometric functions are expressed as finite polynomials of the semi-axes a, b and c of the ellipsoid. The polynomial form exists for any order of the multipole moments. It is shown that the solution also applies to a two-domain ellipsoid with antiparallel polarized domains and to a system with radially changing polarization density. The results allow us to calculate the potential as well as interaction energies within the framework of multipole expansion.

[1]  D. D. Carpintero,et al.  Softened potentials and the multipolar expansion , 2006 .

[2]  M. De Graef,et al.  Demagnetization factors of the general ellipsoid: An alternative to the Maxwell approach , 2006 .

[3]  H. Oepen,et al.  Multipolar ordering and magnetization reversal in two-dimensional nanomagnet arrays. , 2005, Physical review letters.

[4]  H. Oepen,et al.  Multipole moments of in-plane magnetized disks , 2005 .

[5]  Xinwei Wang,et al.  Chain of ellipsoids approach to the magnetic nanowire , 2005 .

[6]  C. Serna,et al.  Microstructural characterization of ellipsoidal iron metal nanoparticles , 2004 .

[7]  Paul L. A. Popelier,et al.  Atom–atom partitioning of intramolecular and intermolecular Coulomb energy , 2001 .

[8]  Takayoshi Hayashi,et al.  Elongated prolate ellipsoid CoPt nanocrystals embedded in graphite-like C magnetic thin films , 2000 .

[9]  D. Stamper-Kurn,et al.  Spin domains in ground-state Bose–Einstein condensates , 1998, Nature.

[10]  C. Hwang A method for computing the coefficients in the product-sum formula of associated Legendre functions , 1995 .

[11]  M. Milgrom,et al.  Finite Disks with Power-Law Potentials , 1994, astro-ph/9408025.

[12]  A. Mason,et al.  Field of a nonuniformly charged inhomogeneous dielectric ellipsoid , 1991 .

[13]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[14]  E. Newman,et al.  Structure of Gravitational Sources , 1965 .

[15]  H. Chang Fields external to open-structure magnetic devices represented by ellipsoid or spheroid , 1961 .

[16]  R. Buehler,et al.  Bipolar Expansion of Coulombic Potentials , 1951 .

[17]  Stoner EdmundC.,et al.  XCVII. The demagnetizing factors for ellipsoids , 1945 .

[18]  J. Osborn Demagnetizing Factors of the General Ellipsoid , 1945 .

[19]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.