Orthogonal packing of identical rectangles within isotropic convex regions

A mixed integer continuous nonlinear model and a solution method for the problem of orthogonally packing identical rectangles within an arbitrary convex region are introduced in the present work. The convex region is assumed to be made of an isotropic material in such a way that arbitrary rotations of the items, preserving the orthogonality constraint, are allowed. The solution method is based on a combination of branch and bound and active-set strategies for bound-constrained minimization of smooth functions. Numerical results show the reliability of the presented approach.

[1]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[2]  Nenad Mladenovic,et al.  Reformulation descent applied to circle packing problems , 2003, Comput. Oper. Res..

[3]  Huaiqing Wang,et al.  An improved algorithm for the packing of unequal circles within a larger containing circle , 2002, Eur. J. Oper. Res..

[4]  Reinaldo Morabito,et al.  Optimizing the cutting of stock plates in a furniture company , 2000 .

[5]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[6]  Marco Locatelli,et al.  Packing equal circles in a square: a deterministic global optimization approach , 2002, Discret. Appl. Math..

[7]  José Mario Martínez,et al.  Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients , 2002, Comput. Optim. Appl..

[8]  José Mario Martínez,et al.  Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization , 2006, Comput. Oper. Res..

[9]  Leo Liberti,et al.  Reformulations in Mathematical Programming: Definitions and Systematics , 2009, RAIRO Oper. Res..

[10]  Shengjun Xue,et al.  An improved energy landscape paving algorithm for the problem of packing circles into a larger containing circle , 2009, Comput. Ind. Eng..

[11]  Reinaldo Morabito,et al.  A note on linear models for two-group and three-group two-dimensional guillotine cutting problems , 2008 .

[12]  José Mario Martínez,et al.  On Augmented Lagrangian Methods with General Lower-Level Constraints , 2007, SIAM J. Optim..

[13]  José Mario Martínez,et al.  Method of sentinels for packing items within arbitrary convex regions , 2006, J. Oper. Res. Soc..

[14]  Reinaldo Morabito,et al.  An L-approach for packing (ℓ, w)-rectangles into rectangular and L-shaped pieces , 2003, J. Oper. Res. Soc..

[15]  Ernesto G. Birgin,et al.  Minimizing the object dimensions in circle and sphere packing problems , 2008, Comput. Oper. Res..

[16]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[17]  G. Ribiere,et al.  Experiments in mixed-integer linear programming , 1971, Math. Program..

[18]  Reinaldo Morabito,et al.  Linear and Non-linear Models for Staged Two-Dimensional Guillotine Cutting Problems , 2008 .

[19]  José Mario Martínez,et al.  Algorithm 813: SPG—Software for Convex-Constrained Optimization , 2001, TOMS.

[20]  José Mario Martínez,et al.  Augmented Lagrangian methods under the constant positive linear dependence constraint qualification , 2007, Math. Program..

[21]  David G. Luenberger,et al.  Linear and Nonlinear Programming: Second Edition , 2003 .

[22]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[23]  José Mario Martínez,et al.  Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking , 2003, J. Comput. Chem..

[24]  Ernesto G. Birgin,et al.  Using sentinels to detect intersections of convex and nonconvex polygons , 2010 .

[25]  José Mario Martínez,et al.  Optimizing the packing of cylinders into a rectangular container: A nonlinear approach , 2005, Eur. J. Oper. Res..

[26]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[27]  Reinaldo Morabito,et al.  A note on an L-approach for solving the manufacturer's pallet loading problem , 2005, J. Oper. Res. Soc..

[28]  R. Morabito,et al.  Linear models for 1-group two-dimensional guillotine cutting problems , 2006 .

[29]  Panos M. Pardalos,et al.  New results in the packing of equal circles in a square , 1995, Discret. Math..

[30]  Jonathan Eckstein,et al.  Parallel Branch-and-Bound Algorithms for General Mixed Integer Programming on the CM-5 , 1994, SIAM J. Optim..

[31]  Patric R. J. Östergård,et al.  Packing up to 50 Equal Circles in a Square , 1997, Discret. Comput. Geom..

[32]  José Mario Martínez,et al.  Global minimization using an Augmented Lagrangian method with variable lower-level constraints , 2010, Math. Program..

[33]  J. M. Martínez,et al.  A Box-Constrained Optimization Algorithm with Negative Curvature Directions and Spectral Projected Gradients , 2001 .

[34]  Reinaldo Morabito,et al.  A simple and effective recursive procedure for the manufacturer's pallet loading problem , 1998, J. Oper. Res. Soc..

[35]  Reinaldo Morabito,et al.  An effective recursive partitioning approach for the packing of identical rectangles in a rectangle , 2010, J. Oper. Res. Soc..

[36]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[37]  Ernesto G. Birgin,et al.  New and improved results for packing identical unitary radius circles within triangles, rectangles and strips , 2010, Comput. Oper. Res..