Chemistry of Triple‐Decker Sandwich Complexes Containing Four‐Membered Open B2E2 Rings (E = S or Se)

Building upon our earlier studies on cobaltaheteroboranes, we explored the chemistry with heavier group 9 metals. Reaction of [Cp*M(μ-Cl)Clx]2 (Cp* = ɳ-C5Me5; M = Co, x = 0; M = Rh or Ir, x = 1) with [LiBH4·THF] followed by thermolysis with excess of chalcogen powders (S or Se) afforded dimetallaheteroboranes nido[(Cp*M)2B2H2E2], 1-4 (1: E = S, 2: E = Se, M = Co; 3-4: E = Se, M = Rh and Ir) in moderate to good yields. The solid state X-ray structures of these compounds show open-cage triple decker clusters. Attempts to isolate the Te analogue was failed, however, in case of cobalt, we have isolated an 11 sep nido-[(Cp*Co)2B5H5Te2], 5. The X-ray structure of 5 shows mono-capped square antiprism geometry having two Te atoms in the core. In order to close the central four-membered B2E2 open ring of nido-1 and nido-2, we have performed the reaction with [Ru3(CO)12] that led to the formation of closo-[(Cp*Co){μ-η:η-B2H2E2M}M{μ-Ru(CO)4}], 6-7 (6: E = S, 7: E = Se; M = Ru(CO)2). In contrast, the reactions of nido-2 and nido-3 with [Fe2(CO)9] resulted heterometallic clusters nido[(Cp*M)Fe(CO)3B2H2Se2], 8-9 (8: M = Co; 9: M = Rh), [(Cp*Co)Fe3(CO)8Se2], 10 and [(Cp*Co)Fe2(CO)7Se], 11. As nido-8 also contains a four-membered open ring B2Se2, we treated this with [Ru3(CO)12] that yielded closo-[(Cp*Co){μ-η:η-B2H2Se2M}M{μFe(CO)4}], 12 (M = Ru(CO)2), analogous to that of 7. In addition, we have analyzed the divergence in reactivity of nido-[(Cp*M)2B2H2E2], 2-4 with the help of density functional theory (DFT) calculations.

[1]  S. K. Barik,et al.  Electron Precise Group 5 Dimetallaheteroboranes [{CpV(μ-EPh)}2{μ-η2:η2-BH3E}] and [{CpNb(μ-EPh)}2{μ-η2:η2-B2H4E}] (E = S or Se). , 2018, Inorganic chemistry.

[2]  A. Singh,et al.  Complexes of (η5-Cp*)Ir(iii) with 1-benzyl-3-phenylthio/selenomethyl-1,3-dihydrobenzoimidazole-2-thione/selenone: catalyst for oxidation and 1,2-substituted benzimidazole synthesis. , 2017, Dalton transactions.

[3]  S. K. Barik,et al.  Extended Sandwich Molecules Displaying Direct Metal–Metal Bonds , 2016 .

[4]  B. Varghese,et al.  Hypo-electronic triple-decker sandwich complexes: synthesis and structural characterization of [(Cp*Mo)2{μ-η(6):η(6)-B4H4E-Ru(CO)3}] (E = S, Se, Te or Ru(CO)3 and Cp* = η(5)-C5Me5). , 2016, Dalton transactions.

[5]  R. Borthakur,et al.  Hypoelectronic isomeric diiridaboranes [(Cp*Ir)2B6H6]: the "Rule-Breakers"(Cp* = η(5)-C5Me5). , 2016, Chemical communications.

[6]  S. K. Barik,et al.  Electron-Precise 1,3-Bishomocubanes – A Combined Experimental and Theoretical Study , 2015 .

[7]  S. K. Barik,et al.  Synthesis and chemistry of the open-cage cobaltaheteroborane cluster [{(η(5)-C5Me5)Co}2B2H2Se2]: a combined experimental and theoretical study. , 2015, Dalton transactions.

[8]  F. Lahoz,et al.  [1,1-(η(2)-dppe)-3-(NC5H5)-closo-1,2-RhSB9H8]: conformational lability and reactivity with H2 upon protonation. , 2015, Dalton transactions.

[9]  I. Manners,et al.  Recent developments with strained metallocenophanes , 2015 .

[10]  Sundargopal Ghosh,et al.  Diruthenium analogues of Hexaborane(12) and Pentaborane(9): Synthesis and structural characterization of [(1,2-Cp*Ru)2B2H6S2] and [(2,3-Cp*Ru)2B3H6(μ-η1-EPh)], (E = S, Se and Te) (Cp* = η5-C5Me5) , 2015 .

[11]  Sundargopal Ghosh,et al.  Dimetallaheteroborane clusters containing group 16 elements: A combined experimental and theoretical study , 2014, Journal of Chemical Sciences.

[12]  B. Varghese,et al.  Synthesis, characterization and crystal structure analysis of cobaltaborane and cobaltaheteroborane clusters. , 2014, Dalton transactions.

[13]  B. Varghese,et al.  Synthesis and structural characterization of group 5 dimetallaheteroboranes , 2013 .

[14]  Sundargopal Ghosh,et al.  Hypoelectronic dimetallaheteroboranes of group 6 transition metals containing heavier chalcogen elements. , 2013, Inorganic chemistry.

[15]  S. Mobin,et al.  Supraicosahedral polyhedra in metallaboranes: synthesis and structural characterization of 12-, 15-, and 16-vertex rhodaboranes. , 2013, Inorganic chemistry.

[16]  M. Kanai,et al.  A cationic high-valent Cp*Co(III) complex for the catalytic generation of nucleophilic organometallic species: directed C-H bond activation. , 2013, Angewandte Chemie.

[17]  Sundargopal Ghosh,et al.  Novel triple-decker sandwich complex with a six-membered [B3Co2(μ4-Te)] ring as the middle deck. , 2013, Inorganic chemistry.

[18]  Sundargopal Ghosh,et al.  Synthesis and characterization of novel eleven-vertex dimetallaheteroborane clusters containing Heavier group 16 elements , 2012 .

[19]  T. Roisnel,et al.  Theoretical and Experimental Investigations on Hypoelectronic Heterodimetallaboranes of Group 6 Transition Metals , 2012 .

[20]  F. Lahoz,et al.  Facile two-electron reduction of a closo-rhodathiadecaborane. , 2012, Dalton transactions.

[21]  S. Mobin,et al.  Synthesis and structural characterization of new divanada- and diniobaboranes containing chalcogen atoms. , 2012, Chemistry.

[22]  Sundargopal Ghosh,et al.  Novel class of heterometallic cubane and boride clusters containing heavier group 16 elements. , 2012, Inorganic chemistry.

[23]  Sundargopal Ghosh,et al.  Heterometallic cubane-type clusters containing group 13 and 16 elements , 2012 .

[24]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[25]  S. Mobin,et al.  Metallaheteroborane clusters of group 5 transition metals derived from dichalcogenide ligands , 2011 .

[26]  Sundargopal Ghosh,et al.  Synthesis, structure and characterization of dimolybdaheteroboranes , 2011 .

[27]  V. M. Suresh,et al.  A new entry into ferraborane chemistry: Synthesis and characterization of heteroferraborane complexes , 2011 .

[28]  Satyanarayan Sahoo,et al.  A family of heterometallic cubane-type clusters with an exo-Fe(CO)3 fragment anchored to the cubane. , 2011, Angewandte Chemie.

[29]  S. Mobin,et al.  Chemistry of molybdaboranes: synthesis, structures, and characterization of a new class of open-cage dimolybdaheteroborane clusters. , 2010, Inorganic chemistry.

[30]  G. Jin,et al.  Self-assembled half-sandwich Ir, Rh-based organometallic molecular boxes for reversible trapping of halocarbon molecules. , 2010, Dalton transactions.

[31]  S. Mobin,et al.  Direct insertion of sulfur, selenium and tellurium atoms into metallaborane cages using chalcogen powders , 2010 .

[32]  T. Kupfer,et al.  Non-iron [n]metalloarenophanes. , 2010, Accounts of chemical research.

[33]  B. Varghese,et al.  Chemistry of vanadaboranes: synthesis, structures, and characterization of organovanadium sulfide clusters with disulfido linkage. , 2010, Inorganic chemistry.

[34]  G. Jin,et al.  Neutral and zwitterionic half-sandwich Ir, Rh complexes supported by P,S-substituted o-carboranyl ligands: Synthesis, characterization and reactivity. , 2010, Dalton transactions.

[35]  G. Jin,et al.  Stepwise formation of organometallic macrocycles, prisms and boxes from Ir, Rh and Ru-based half-sandwich units. , 2009, Chemical Society reviews.

[36]  F. Lahoz,et al.  Alkyne-promoted H2 loss in a metallaborane: nido-to-closo cluster transformation and sp C-H bond oxidative addition. , 2009, Chemistry.

[37]  M. Fabra,et al.  Alkene hydrogenation on an 11-vertex rhodathiaborane with full cluster participation. , 2008, Journal of the American Chemical Society.

[38]  D. Stalke,et al.  Elektronendichteuntersuchung der Metall-Metall-Bindung im zweikernigen “Borylen”-Komplex [{Cp(CO)2Mn}2(μ-BtBu)]† , 2008 .

[39]  D. Stalke,et al.  Electron-density investigation of metal-metal bonding in the dinuclear "borylene" complex [{Cp(CO)2Mn}2(mu-BtBu)]. , 2008, Angewandte Chemie.

[40]  M. Fabra,et al.  Reversible ethylene dihydrogen mediated 11-vertex nido --> closo --> nido conversion in a metallathiaborane cluster. , 2008, Journal of the American Chemical Society.

[41]  J. Kennedy,et al.  Pentahapto-bonded gold heteroborane clusters [3-(R3P)-closo-2,1-AuTeB10H10]- and [3-(R3P)-closo-3,1,2-AuAs2B9H9]-. , 2006, Dalton transactions.

[42]  Steffen Pütz,et al.  Na2[B18Se16]: The First 3D Polymeric Selenoborato-closo-dodecaborate† , 2005 .

[43]  T. Fehlner,et al.  Synthesis and characterization of bicapped hexagonal bipyramidal 2,3-Cl(2)-1,8-[Cp*Re](2)B(6)H(4)([Cp*Re](2)[mu-eta(6):eta(6)-1,2-B(6)H(4)Cl(2)], Cp* = eta(5)-C(5)Me(5)): the missing link connecting (p - 2) skeletal electron pair hypoelectronic rhenaboranes and 24-valence electron triple-decker comp , 2001, Journal of the American Chemical Society.

[44]  T. Fehlner,et al.  Role of the transition metal in metallaborane chemistry. Reactivity of (Cp*ReH2)2B4H4 with BH3.thf, CO, and Co2(CO)8. , 2000, Inorganic chemistry.

[45]  T. Fehlner,et al.  A Novel Coordinated Inorganic Benzene: Synthesis and Characterization of {η5-C5Me5Re}2{μ-η6:η6-B4H4Co2(CO)5} , 1999 .

[46]  T. Fehlner,et al.  Novel Iridaboranes from the Reactions of Cp*2Ir2HxCl4-x, x = 0−2, with LiBH4. Existence of a Concurrent Reaction Channel in the Conversion of Metal Chlorides to Metal Hydrides , 1999 .

[47]  Evert Jan Baerends,et al.  Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance , 1999 .

[48]  T. Fehlner,et al.  Chemistry of Dimetallaboranes Derived from the Reaction of [Cp*MCl2]2 with Monoboranes (M = Ru, Rh; Cp* = η5-C5Me5) , 1999 .

[49]  Tom Ziegler,et al.  Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling , 1998 .

[50]  T. Jelínek,et al.  Metallaborane reaction chemistry. Macropolyhedral metallaheteroborane synthesis by direct heteroatom insertion. Formation of the twenty-vertex [(-CMe)IrBHS] anion from nineteen-vertex -[(-CMe)IrBH] , 1998 .

[51]  N. Rath,et al.  Metallaborane Heteroatom Incorporation Reactions: Metallacarboranes, Metallathiaboranes, and an Iridaazaborane from Iridanonaborane Precursors , 1996 .

[52]  G. Schreckenbach,et al.  The calculation of NMR shielding tensors based on density functional theory and the frozen‐core approximation , 1996 .

[53]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[54]  N. Rath,et al.  closo‐[B5H4PPh3{Fe(CO)3}{Ir(CO)2PPh3}]: The First Structurally Characterized closo‐Heterobimetallaheptaborane System , 1995 .

[55]  Jonathan Bould,et al.  closo-[B5H4(PPh3){Fe(CO)3}{Ir(CO)2(PPh3)}]: das erste strukturell charakterisierte closo-Heterodimetallaheptaboran† , 1995 .

[56]  T. Fehlner,et al.  Synthesis of Cobaltaborane Clusters from [Cp*CoCl]2 and Monoboranes. New Structures and Mechanistic Implications , 1994 .

[57]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[58]  L. Sneddon,et al.  Syntheses and structural characterizations of hypho- and arachno-metalladithiaborane clusters , 1992 .

[59]  M. Steigerwald,et al.  Initial stages in the molecule-based growth of the solid-state compound cobalt telluride (CoTe) , 1991 .

[60]  N. N. Greenwood,et al.  Organoruthenaborane Chemistry. VIII. Reactions of [{(η6‐C6Me6)RuCl2}2] and [{(η6‐MeC6H 4lPr)RuCl2}2] with Cs[arachno‐6‐SB9H12]: Isolation of ten‐, eleven‐, and twelve‐vertex ruthenathiaboranes and their characterization by N.M.R. spectroscopy , 1991 .

[61]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[62]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[63]  L. Sneddon,et al.  Metal atom synthesis of metallaboron clusters. 7. Synthesis and structural characterization of an open-cage metallathiaborane cluster having a triple-decker structure: 4,6-(.eta.-C5H5)2Co2-3,5-S2B2H2 , 1985 .

[64]  D. Mingos Polyhedral skeletal electron pair approach , 1984 .

[65]  R. Grimes,et al.  (Pentamethylcyclopentadienyl)cobaltaboranes derived from the octahydropentaborate (B5H8-) and tetradecahydrononaborate (B9H14-) ions: studies in synthesis and structure , 1982 .

[66]  B. Fuss,et al.  Bridged C5Me5CoII Complexes— Reactive Intermediates in the Cyclopentadienylation of Cobalt(II) Halides† , 1982 .

[67]  W. Krüger,et al.  Wasserstoffentwicklung aus photochemisch reduzierten, wasserlöslichen Zinn(IV)‐porphyrinen , 1982 .

[68]  J. Huffman,et al.  CHEMISTRY OF DITHIA-, SELENATHIA-, AND DISELENABORANES , 1980 .

[69]  R. Grimes Metal sandwich complexes of cyclic planar and pyramidal ligands contaning boron , 1979 .

[70]  R. Grimes Structure and stereochemistry in metalloboron cage compounds , 1978 .

[71]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[72]  D. M. P. Mingos A General Theory for Cluster and Ring Compounds of the Main Group and Transition Elements , 1972 .

[73]  P. Maitlis,et al.  Pentamethylcyclopentadienylrhodium and -iridium halides. I. Synthesis and properties , 1969 .

[74]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[75]  S. K. Barik,et al.  Hypoelectronic metallaboranes: Synthesis, structural characterization and electronic structures of metal-rich cobaltaboranes , 2014 .

[76]  Clark R. Landis,et al.  Valency and Bonding: Contents , 2005 .

[77]  Clark R. Landis,et al.  Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective , 2005 .

[78]  M. M. Balakrishnarajan,et al.  Electronic requirements for macropolyhedral boranes. , 2002, Chemical reviews.

[79]  A. Orpen,et al.  Diborane(4) compounds incorporating thio- and seleno-carboranyl groups , 2000 .

[80]  Georg Schreckenbach,et al.  Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes , 1997 .

[81]  J. Kennedy,et al.  Metallaborane Reaction Chemistry. Part 4. Polyhedral Thiametallaborane Synthesis via Direct Incorporation of Sulfur Into Metallaboranes , 1997 .

[82]  J. Kennedy,et al.  Conformational polymorphism and fluxional behaviour of M(PR3)2 units in closo-twelve-atom metallaheteroboranes with MX2B9(X = C or As) and MZB10 cages (Z = S, Se or Te) , 1996 .

[83]  G. Schreckenbach,et al.  Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory , 1995 .

[84]  J. Kennedy,et al.  Eleven- and twelve-vertex polyhedral metalladithiaborane chemistry. Novel compounds from the arachno-[S2B9H10]– anion: [(PPh3)3H2IrS2B9H10], [(PPh3)2HIrS2B9H9] and [(PPh3)2HRhS2B8H8] , 1994 .

[85]  J. Kennedy,et al.  Metallaheteroborane chemistry. Part 11. Selective syntheses of the palladium heteroborane complexes [2,2-(PR3)2-closo-2,1-PdEB10H10](R3= Ph3, MePh2 or Me2Ph; E = Se or Te) and [2-X-2-(PPh3)-closo-2,1-PdTeB10H9(PPh3)](X = Cl, Br, I, CN, SCN or O2CMe) , 1993 .

[86]  J. Kennedy,et al.  Metallaheteroborane chemistry. Part 7. Synthesis, crystal structure, and characterisation of two dinuclear rhodatelluraboranes, [{(PPh3)2RhTeB10H10}2] and [(PPh3)(CO)Rh2Te2B20H20] , 1990 .

[87]  J. Kennedy,et al.  Novel rhodathiaborane complexes derived from [(PPh3)2RhSB9H10] , 1990 .

[88]  M. Manassero,et al.  Nickel carbide carbonyl clusters. Synthesis and structural characterization of [Ni8(CO)16C]2− and [Ni9(CO)17C]2− , 1985 .

[89]  T. Rauchfuss,et al.  Reactivity of Fe3(.mu.3-Te)2(CO)9 toward Lewis bases. 1 , 1982 .

[90]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .