Chemistry of Triple‐Decker Sandwich Complexes Containing Four‐Membered Open B2E2 Rings (E = S or Se)
暂无分享,去创建一个
S. K. Barik | V. Dorcet | T. Roisnel | Sundargopal Ghosh | R. Ramalakshmi | Benson Joseph | Gargi Kundu
[1] S. K. Barik,et al. Electron Precise Group 5 Dimetallaheteroboranes [{CpV(μ-EPh)}2{μ-η2:η2-BH3E}] and [{CpNb(μ-EPh)}2{μ-η2:η2-B2H4E}] (E = S or Se). , 2018, Inorganic chemistry.
[2] A. Singh,et al. Complexes of (η5-Cp*)Ir(iii) with 1-benzyl-3-phenylthio/selenomethyl-1,3-dihydrobenzoimidazole-2-thione/selenone: catalyst for oxidation and 1,2-substituted benzimidazole synthesis. , 2017, Dalton transactions.
[3] S. K. Barik,et al. Extended Sandwich Molecules Displaying Direct Metal–Metal Bonds , 2016 .
[4] B. Varghese,et al. Hypo-electronic triple-decker sandwich complexes: synthesis and structural characterization of [(Cp*Mo)2{μ-η(6):η(6)-B4H4E-Ru(CO)3}] (E = S, Se, Te or Ru(CO)3 and Cp* = η(5)-C5Me5). , 2016, Dalton transactions.
[5] R. Borthakur,et al. Hypoelectronic isomeric diiridaboranes [(Cp*Ir)2B6H6]: the "Rule-Breakers"(Cp* = η(5)-C5Me5). , 2016, Chemical communications.
[6] S. K. Barik,et al. Electron-Precise 1,3-Bishomocubanes – A Combined Experimental and Theoretical Study , 2015 .
[7] S. K. Barik,et al. Synthesis and chemistry of the open-cage cobaltaheteroborane cluster [{(η(5)-C5Me5)Co}2B2H2Se2]: a combined experimental and theoretical study. , 2015, Dalton transactions.
[8] F. Lahoz,et al. [1,1-(η(2)-dppe)-3-(NC5H5)-closo-1,2-RhSB9H8]: conformational lability and reactivity with H2 upon protonation. , 2015, Dalton transactions.
[9] I. Manners,et al. Recent developments with strained metallocenophanes , 2015 .
[10] Sundargopal Ghosh,et al. Diruthenium analogues of Hexaborane(12) and Pentaborane(9): Synthesis and structural characterization of [(1,2-Cp*Ru)2B2H6S2] and [(2,3-Cp*Ru)2B3H6(μ-η1-EPh)], (E = S, Se and Te) (Cp* = η5-C5Me5) , 2015 .
[11] Sundargopal Ghosh,et al. Dimetallaheteroborane clusters containing group 16 elements: A combined experimental and theoretical study , 2014, Journal of Chemical Sciences.
[12] B. Varghese,et al. Synthesis, characterization and crystal structure analysis of cobaltaborane and cobaltaheteroborane clusters. , 2014, Dalton transactions.
[13] B. Varghese,et al. Synthesis and structural characterization of group 5 dimetallaheteroboranes , 2013 .
[14] Sundargopal Ghosh,et al. Hypoelectronic dimetallaheteroboranes of group 6 transition metals containing heavier chalcogen elements. , 2013, Inorganic chemistry.
[15] S. Mobin,et al. Supraicosahedral polyhedra in metallaboranes: synthesis and structural characterization of 12-, 15-, and 16-vertex rhodaboranes. , 2013, Inorganic chemistry.
[16] M. Kanai,et al. A cationic high-valent Cp*Co(III) complex for the catalytic generation of nucleophilic organometallic species: directed C-H bond activation. , 2013, Angewandte Chemie.
[17] Sundargopal Ghosh,et al. Novel triple-decker sandwich complex with a six-membered [B3Co2(μ4-Te)] ring as the middle deck. , 2013, Inorganic chemistry.
[18] Sundargopal Ghosh,et al. Synthesis and characterization of novel eleven-vertex dimetallaheteroborane clusters containing Heavier group 16 elements , 2012 .
[19] T. Roisnel,et al. Theoretical and Experimental Investigations on Hypoelectronic Heterodimetallaboranes of Group 6 Transition Metals , 2012 .
[20] F. Lahoz,et al. Facile two-electron reduction of a closo-rhodathiadecaborane. , 2012, Dalton transactions.
[21] S. Mobin,et al. Synthesis and structural characterization of new divanada- and diniobaboranes containing chalcogen atoms. , 2012, Chemistry.
[22] Sundargopal Ghosh,et al. Novel class of heterometallic cubane and boride clusters containing heavier group 16 elements. , 2012, Inorganic chemistry.
[23] Sundargopal Ghosh,et al. Heterometallic cubane-type clusters containing group 13 and 16 elements , 2012 .
[24] Tian Lu,et al. Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..
[25] S. Mobin,et al. Metallaheteroborane clusters of group 5 transition metals derived from dichalcogenide ligands , 2011 .
[26] Sundargopal Ghosh,et al. Synthesis, structure and characterization of dimolybdaheteroboranes , 2011 .
[27] V. M. Suresh,et al. A new entry into ferraborane chemistry: Synthesis and characterization of heteroferraborane complexes , 2011 .
[28] Satyanarayan Sahoo,et al. A family of heterometallic cubane-type clusters with an exo-Fe(CO)3 fragment anchored to the cubane. , 2011, Angewandte Chemie.
[29] S. Mobin,et al. Chemistry of molybdaboranes: synthesis, structures, and characterization of a new class of open-cage dimolybdaheteroborane clusters. , 2010, Inorganic chemistry.
[30] G. Jin,et al. Self-assembled half-sandwich Ir, Rh-based organometallic molecular boxes for reversible trapping of halocarbon molecules. , 2010, Dalton transactions.
[31] S. Mobin,et al. Direct insertion of sulfur, selenium and tellurium atoms into metallaborane cages using chalcogen powders , 2010 .
[32] T. Kupfer,et al. Non-iron [n]metalloarenophanes. , 2010, Accounts of chemical research.
[33] B. Varghese,et al. Chemistry of vanadaboranes: synthesis, structures, and characterization of organovanadium sulfide clusters with disulfido linkage. , 2010, Inorganic chemistry.
[34] G. Jin,et al. Neutral and zwitterionic half-sandwich Ir, Rh complexes supported by P,S-substituted o-carboranyl ligands: Synthesis, characterization and reactivity. , 2010, Dalton transactions.
[35] G. Jin,et al. Stepwise formation of organometallic macrocycles, prisms and boxes from Ir, Rh and Ru-based half-sandwich units. , 2009, Chemical Society reviews.
[36] F. Lahoz,et al. Alkyne-promoted H2 loss in a metallaborane: nido-to-closo cluster transformation and sp C-H bond oxidative addition. , 2009, Chemistry.
[37] M. Fabra,et al. Alkene hydrogenation on an 11-vertex rhodathiaborane with full cluster participation. , 2008, Journal of the American Chemical Society.
[38] D. Stalke,et al. Elektronendichteuntersuchung der Metall-Metall-Bindung im zweikernigen “Borylen”-Komplex [{Cp(CO)2Mn}2(μ-BtBu)]† , 2008 .
[39] D. Stalke,et al. Electron-density investigation of metal-metal bonding in the dinuclear "borylene" complex [{Cp(CO)2Mn}2(mu-BtBu)]. , 2008, Angewandte Chemie.
[40] M. Fabra,et al. Reversible ethylene dihydrogen mediated 11-vertex nido --> closo --> nido conversion in a metallathiaborane cluster. , 2008, Journal of the American Chemical Society.
[41] J. Kennedy,et al. Pentahapto-bonded gold heteroborane clusters [3-(R3P)-closo-2,1-AuTeB10H10]- and [3-(R3P)-closo-3,1,2-AuAs2B9H9]-. , 2006, Dalton transactions.
[42] Steffen Pütz,et al. Na2[B18Se16]: The First 3D Polymeric Selenoborato-closo-dodecaborate† , 2005 .
[43] T. Fehlner,et al. Synthesis and characterization of bicapped hexagonal bipyramidal 2,3-Cl(2)-1,8-[Cp*Re](2)B(6)H(4)([Cp*Re](2)[mu-eta(6):eta(6)-1,2-B(6)H(4)Cl(2)], Cp* = eta(5)-C(5)Me(5)): the missing link connecting (p - 2) skeletal electron pair hypoelectronic rhenaboranes and 24-valence electron triple-decker comp , 2001, Journal of the American Chemical Society.
[44] T. Fehlner,et al. Role of the transition metal in metallaborane chemistry. Reactivity of (Cp*ReH2)2B4H4 with BH3.thf, CO, and Co2(CO)8. , 2000, Inorganic chemistry.
[45] T. Fehlner,et al. A Novel Coordinated Inorganic Benzene: Synthesis and Characterization of {η5-C5Me5Re}2{μ-η6:η6-B4H4Co2(CO)5} , 1999 .
[46] T. Fehlner,et al. Novel Iridaboranes from the Reactions of Cp*2Ir2HxCl4-x, x = 0−2, with LiBH4. Existence of a Concurrent Reaction Channel in the Conversion of Metal Chlorides to Metal Hydrides , 1999 .
[47] Evert Jan Baerends,et al. Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance , 1999 .
[48] T. Fehlner,et al. Chemistry of Dimetallaboranes Derived from the Reaction of [Cp*MCl2]2 with Monoboranes (M = Ru, Rh; Cp* = η5-C5Me5) , 1999 .
[49] Tom Ziegler,et al. Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling , 1998 .
[50] T. Jelínek,et al. Metallaborane reaction chemistry. Macropolyhedral metallaheteroborane synthesis by direct heteroatom insertion. Formation of the twenty-vertex [(-CMe)IrBHS] anion from nineteen-vertex -[(-CMe)IrBH] , 1998 .
[51] N. Rath,et al. Metallaborane Heteroatom Incorporation Reactions: Metallacarboranes, Metallathiaboranes, and an Iridaazaborane from Iridanonaborane Precursors , 1996 .
[52] G. Schreckenbach,et al. The calculation of NMR shielding tensors based on density functional theory and the frozen‐core approximation , 1996 .
[53] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[54] N. Rath,et al. closo‐[B5H4PPh3{Fe(CO)3}{Ir(CO)2PPh3}]: The First Structurally Characterized closo‐Heterobimetallaheptaborane System , 1995 .
[55] Jonathan Bould,et al. closo-[B5H4(PPh3){Fe(CO)3}{Ir(CO)2(PPh3)}]: das erste strukturell charakterisierte closo-Heterodimetallaheptaboran† , 1995 .
[56] T. Fehlner,et al. Synthesis of Cobaltaborane Clusters from [Cp*CoCl]2 and Monoboranes. New Structures and Mechanistic Implications , 1994 .
[57] Giovanni Luca Cascarano,et al. Completion and refinement of crystal structures with SIR92 , 1993 .
[58] L. Sneddon,et al. Syntheses and structural characterizations of hypho- and arachno-metalladithiaborane clusters , 1992 .
[59] M. Steigerwald,et al. Initial stages in the molecule-based growth of the solid-state compound cobalt telluride (CoTe) , 1991 .
[60] N. N. Greenwood,et al. Organoruthenaborane Chemistry. VIII. Reactions of [{(η6‐C6Me6)RuCl2}2] and [{(η6‐MeC6H 4lPr)RuCl2}2] with Cs[arachno‐6‐SB9H12]: Isolation of ten‐, eleven‐, and twelve‐vertex ruthenathiaboranes and their characterization by N.M.R. spectroscopy , 1991 .
[61] Peter Pulay,et al. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .
[62] L. Curtiss,et al. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .
[63] L. Sneddon,et al. Metal atom synthesis of metallaboron clusters. 7. Synthesis and structural characterization of an open-cage metallathiaborane cluster having a triple-decker structure: 4,6-(.eta.-C5H5)2Co2-3,5-S2B2H2 , 1985 .
[64] D. Mingos. Polyhedral skeletal electron pair approach , 1984 .
[65] R. Grimes,et al. (Pentamethylcyclopentadienyl)cobaltaboranes derived from the octahydropentaborate (B5H8-) and tetradecahydrononaborate (B9H14-) ions: studies in synthesis and structure , 1982 .
[66] B. Fuss,et al. Bridged C5Me5CoII Complexes— Reactive Intermediates in the Cyclopentadienylation of Cobalt(II) Halides† , 1982 .
[67] W. Krüger,et al. Wasserstoffentwicklung aus photochemisch reduzierten, wasserlöslichen Zinn(IV)‐porphyrinen , 1982 .
[68] J. Huffman,et al. CHEMISTRY OF DITHIA-, SELENATHIA-, AND DISELENABORANES , 1980 .
[69] R. Grimes. Metal sandwich complexes of cyclic planar and pyramidal ligands contaning boron , 1979 .
[70] R. Grimes. Structure and stereochemistry in metalloboron cage compounds , 1978 .
[71] R. Ditchfield,et al. Self-consistent perturbation theory of diamagnetism , 1974 .
[72] D. M. P. Mingos. A General Theory for Cluster and Ring Compounds of the Main Group and Transition Elements , 1972 .
[73] P. Maitlis,et al. Pentamethylcyclopentadienylrhodium and -iridium halides. I. Synthesis and properties , 1969 .
[74] F. London,et al. Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .
[75] S. K. Barik,et al. Hypoelectronic metallaboranes: Synthesis, structural characterization and electronic structures of metal-rich cobaltaboranes , 2014 .
[76] Clark R. Landis,et al. Valency and Bonding: Contents , 2005 .
[77] Clark R. Landis,et al. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective , 2005 .
[78] M. M. Balakrishnarajan,et al. Electronic requirements for macropolyhedral boranes. , 2002, Chemical reviews.
[79] A. Orpen,et al. Diborane(4) compounds incorporating thio- and seleno-carboranyl groups , 2000 .
[80] Georg Schreckenbach,et al. Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes , 1997 .
[81] J. Kennedy,et al. Metallaborane Reaction Chemistry. Part 4. Polyhedral Thiametallaborane Synthesis via Direct Incorporation of Sulfur Into Metallaboranes , 1997 .
[82] J. Kennedy,et al. Conformational polymorphism and fluxional behaviour of M(PR3)2 units in closo-twelve-atom metallaheteroboranes with MX2B9(X = C or As) and MZB10 cages (Z = S, Se or Te) , 1996 .
[83] G. Schreckenbach,et al. Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory , 1995 .
[84] J. Kennedy,et al. Eleven- and twelve-vertex polyhedral metalladithiaborane chemistry. Novel compounds from the arachno-[S2B9H10]– anion: [(PPh3)3H2IrS2B9H10], [(PPh3)2HIrS2B9H9] and [(PPh3)2HRhS2B8H8] , 1994 .
[85] J. Kennedy,et al. Metallaheteroborane chemistry. Part 11. Selective syntheses of the palladium heteroborane complexes [2,2-(PR3)2-closo-2,1-PdEB10H10](R3= Ph3, MePh2 or Me2Ph; E = Se or Te) and [2-X-2-(PPh3)-closo-2,1-PdTeB10H9(PPh3)](X = Cl, Br, I, CN, SCN or O2CMe) , 1993 .
[86] J. Kennedy,et al. Metallaheteroborane chemistry. Part 7. Synthesis, crystal structure, and characterisation of two dinuclear rhodatelluraboranes, [{(PPh3)2RhTeB10H10}2] and [(PPh3)(CO)Rh2Te2B20H20] , 1990 .
[87] J. Kennedy,et al. Novel rhodathiaborane complexes derived from [(PPh3)2RhSB9H10] , 1990 .
[88] M. Manassero,et al. Nickel carbide carbonyl clusters. Synthesis and structural characterization of [Ni8(CO)16C]2− and [Ni9(CO)17C]2− , 1985 .
[89] T. Rauchfuss,et al. Reactivity of Fe3(.mu.3-Te)2(CO)9 toward Lewis bases. 1 , 1982 .
[90] Kenneth B. Wiberg,et al. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .