Rational Design of Ion Separation Membranes

Abstract Synthetic membranes for desalination and ion separation processes are a prerequisite for the supply of safe and sufficient drinking water as well as smart process water tailored to its application. This requires a versatile membrane fabrication methodology. Starting from an extensive set of new ion separation membranes synthesized with a layer-by-layer methodology, we demonstrate for the first time that an artificial neural network (ANN) can predict ion retention and water flux values based on membrane fabrication conditions. The predictive ANN is used in a local single-objective optimization approach to identify manufacturing conditions that improve permeability of existing membranes. A deterministic global multi-objective optimization is performed in order to identify the upper bound (Pareto front) of the delicate trade-off between ion retention characteristics and permeability. Ultimately, a coupling of the ANN into a hybrid model enables physical insight into the influence of fabrication conditions on apparent membrane properties.

[1]  J. Schlenoff,et al.  Factors Controlling the Growth of Polyelectrolyte Multilayers , 1999 .

[2]  Abhay B. Bulsari,et al.  SIMULATION OF MEMBRANE SEPARATION BY NEURAL NETWORKS , 1995 .

[3]  Matthias Wessling,et al.  Optimization of membrane based nitrogen removal from natural gas , 2016 .

[4]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[5]  J. Schlenoff,et al.  Asymmetric growth in polyelectrolyte multilayers. , 2013, Journal of the American Chemical Society.

[6]  W. Richard Bowen,et al.  Characterisation and prediction of separation performance of nanofiltration membranes , 1996 .

[7]  Wei Cheng,et al.  Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength , 2018, Journal of Membrane Science.

[8]  Andrew L. Zydney,et al.  Permeability and selectivity analysis for ultrafiltration membranes , 2005 .

[9]  Jeffrey C. Grossman,et al.  Nanoporous graphene as a reverse osmosis membrane: Recent insights from theory and simulation , 2015 .

[10]  Michel Cabassud,et al.  Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production , 2000 .

[11]  A. Mohammad,et al.  A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability. , 2013, Advances in colloid and interface science.

[12]  John E. Wong,et al.  Precise tuning of salt retention of backwashable polyelectrolyte multilayer hollow fiber nanofiltration membranes , 2016 .

[13]  Z. Adamczyk,et al.  Influence of ionic strength on poly(diallyldimethylammonium chloride) macromolecule conformations in electrolyte solutions. , 2014, Journal of colloid and interface science.

[14]  Ajay K. Mishra,et al.  A critical review of transport through osmotic membranes , 2014 .

[15]  A. R. Kurdian,et al.  Modeling and optimization of membrane fabrication using artificial neural network and genetic algorithm , 2010 .

[16]  Ali Mortazavi,et al.  Dynamic modelling of milk ultrafiltration by artificial neural network , 2003 .

[17]  Abdolhamid Salahi,et al.  Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm , 2013 .

[18]  W. Richard Bowen,et al.  Modelling the performance of membrane nanofiltration - critical assessment and model development , 2002 .

[19]  Matthias Wessling,et al.  Selectivity of ion exchange membranes: A review , 2018, Journal of Membrane Science.

[20]  Artur M. Schweidtmann,et al.  Deterministic Global Optimization with Artificial Neural Networks Embedded , 2018, Journal of Optimization Theory and Applications.

[21]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[22]  Nidal Hilal,et al.  A comprehensive review of nanofiltration membranes:Treatment, pretreatment, modelling, and atomic force microscopy , 2004 .

[23]  R. J. Petersen,et al.  Composite reverse osmosis and nanofiltration membranes , 1993 .

[24]  R. Schlögl,et al.  Membrane permeation in systems far from equilibrium , 1966 .

[25]  Matthias Wessling,et al.  Membrane processes in biorefinery applications , 2013 .

[26]  Carlo Vandecasteele,et al.  Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. , 2003, Environmental pollution.

[27]  P. Aimar,et al.  Preparation of multifunctional hollow fiber nanofiltration membranes by dynamic assembly of weak polyelectrolyte multilayers , 2017 .

[28]  Patrick K. Simpson,et al.  Artificial Neural Systems: Foundations, Paradigms, Applications, and Implementations , 1990 .

[29]  M. Bruening,et al.  Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. , 2006, Nano letters.

[30]  Rong Wang,et al.  Polymersomes-based high-performance reverse osmosis membrane for desalination , 2018, Journal of Membrane Science.

[31]  W. Richard Bowen,et al.  DYNAMIC ULTRAFILTRATION OF PROTEINS-A NEURAL NETWORK APPROACH , 1998 .

[32]  J. F. Osterle,et al.  Membrane transport characteristics of ultrafine capillaries. , 1968, The Journal of chemical physics.

[33]  Jeremy J. Harris,et al.  Layered Polyelectrolyte Films as Selective, Ultrathin Barriers for Anion Transport , 2000 .

[34]  Nidal Hilal,et al.  Nanofiltration membranes and processes: A review of research trends over the past decade , 2017 .

[35]  Dc Kitty Nijmeijer,et al.  The role of ionic strength and odd-even effects on the properties of polyelectrolyte multilayer nanofiltration membranes , 2015 .

[36]  Merlin L. Bruening,et al.  Correlation of the Swelling and Permeability of Polyelectrolyte Multilayer Films , 2005 .

[37]  A. Ghoufi,et al.  Theoretical investigation of the ionic selectivity of polyelectrolyte multilayer membranes in nanofiltration. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[38]  S. Dubas,et al.  Mechanism of Polyelectrolyte Multilayer Growth: Charge Overcompensation and Distribution , 2001 .

[39]  Frank Bärmann,et al.  On a class of efficient learning algorithms for neural networks , 1992, Neural Networks.

[40]  Nidal Hilal,et al.  Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler–Kedem model , 2007 .

[41]  W. Richard Bowen,et al.  Predicting salt rejections at nanofiltration membranes using artificial neural networks , 2000 .

[42]  Matthias Wessling,et al.  Regenerable polymer/ceramic hybrid nanofiltration membrane based on polyelectrolyte assembly by layer-by-layer technique , 2016 .

[43]  Andriy Yaroshchuk,et al.  Solution-Diffusion–Electro-Migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis and forward osmosis in multi-ionic solutions , 2013 .

[44]  Ahmad Fauzi Ismail,et al.  Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control — a review , 2009 .

[45]  H. Möhwald,et al.  Influence of the Ionic Strength on the Polyelectrolyte Multilayers' Permeability , 2003 .

[46]  Wanqin Jin,et al.  Use of Polyelectrolyte Layer-by-Layer Assemblies as Nanofiltration and Reverse Osmosis Membranes , 2003 .

[47]  Paulo J. G. Lisboa,et al.  The Use of Artificial Neural Networks in Decision Support in Cancer: a Systematic Review , 2005 .

[48]  Artur M. Schweidtmann,et al.  Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm , 2018, Journal of Global Optimization.

[49]  Gary L. Amy,et al.  Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes , 2009 .

[50]  M. W Gardner,et al.  Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences , 1998 .

[51]  Michael Y. Hu,et al.  Forecasting with artificial neural networks: The state of the art , 1997 .

[52]  Jay R. Werber,et al.  Materials for next-generation desalination and water purification membranes , 2016 .

[53]  A. Berg,et al.  Nanofluidics: Silicon for the perfect membrane , 2007, Nature.

[54]  M. Bruening,et al.  Porous star-star polyelectrolyte multilayers for protein binding , 2018 .

[55]  I. Pinnau,et al.  High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8 , 2015 .

[56]  L. Robeson,et al.  The upper bound revisited , 2008 .

[57]  A. Mohammad,et al.  Nanofiltration membranes review: Recent advances and future prospects , 2015 .

[58]  W. Richard Bowen,et al.  Diafiltration by nanofiltration: Prediction and optimization , 1998 .

[59]  Matthias Wessling,et al.  Nanofiltration for the recovery of phosphorus — Development of a mass transport model , 2014 .

[60]  S. Chellam,et al.  Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks , 2005 .

[61]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[62]  Lu Li,et al.  Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes , 2015 .

[63]  B. Schiedt,et al.  A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores , 2005 .

[64]  Soteris A. Kalogirou,et al.  Artificial neural networks in renewable energy systems applications: a review , 2001 .

[65]  M. Bruening,et al.  High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[66]  Marianne Nyström,et al.  Drawbacks of applying nanofiltration and how to avoid them: A review , 2008 .

[67]  F. Rehfeldt,et al.  Swelling Behavior of Polyelectrolyte Multilayers in Saturated Water Vapor , 2004 .