The structure of human ubiquitin in 2‐methyl‐2,4‐pentanediol: A new conformational switch

A new crystal structure of human ubiquitin is reported at 1.8 Å resolution. Compared with the other known crystal structure or the solution NMR structure of monomeric human ubiquitin, this new structure is similar in its overall fold but differs with respect to the conformation of the backbone in a surface‐exposed region. The conformation reported here resembles conformations previously seen in complex with deubiquinating enzymes, wherein the Asp52/Gly53 main chain and Glu24 side chain move. This movement exposes the backbone carbonyl of Asp52 to the exterior of the molecule, making it possible to engage in hydrogen‐bond contacts with neighboring molecules, rather than in an internal hydrogen bond with the backbone of Glu24. This particular crystal form of ubiquitin has been used in a large number of solid state NMR studies. The structure described here elucidates the origin of many of the chemical shift differences comparing solution and solid state studies.

[1]  Robert E. Cohen,et al.  Structural Insights into the Assembly and Function of the SAGA Deubiquitinating Module , 2010, Science.

[2]  O. Nureki,et al.  Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains , 2008, Nature.

[3]  Muyang Li,et al.  Crystal Structure of a UBP-Family Deubiquitinating Enzyme in Isolation and in Complex with Ubiquitin Aldehyde , 2002, Cell.

[4]  A. Palmer,et al.  Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R1ρ relaxation experiments , 2005, Protein science : a publication of the Protein Society.

[5]  V. Gaponenko,et al.  1H–15N correlation spectroscopy of nanocrystalline proteins , 2005, Journal of biomolecular NMR.

[6]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[7]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[8]  R. Nussinov,et al.  The role of dynamic conformational ensembles in biomolecular recognition. , 2009, Nature chemical biology.

[9]  S. Becker,et al.  Protein solid-state NMR resonance assignments from (13C,13C) correlation spectroscopy , 2004 .

[10]  Roger L. Williams,et al.  Structural Insights into Endosomal Sorting Complex Required for Transport (ESCRT-I) Recognition of Ubiquitinated Proteins* , 2004, Journal of Biological Chemistry.

[11]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[12]  A. McDermott,et al.  Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy. , 2006, Journal of the American Chemical Society.

[13]  G Jogl,et al.  COMO: a program for combined molecular replacement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[14]  R. Ghose,et al.  Probing Slow Backbone Dynamics in Proteins Using TROSY-Based Experiments to Detect Cross-Correlated Time-Modulation of Isotropic Chemical Shifts , 2004, Journal of biomolecular NMR.

[15]  G. A. Lazar,et al.  De novo design of the hydrophobic core of ubiquitin , 1997, Protein science : a publication of the Protein Society.

[16]  Oliver F. Lange,et al.  Recognition Dynamics Up to Microseconds Revealed from an RDC-Derived Ubiquitin Ensemble in Solution , 2008, Science.

[17]  A. Wand,et al.  Internal dynamics of human ubiquitin revealed by 13C-relaxation studies of randomly fractionally labeled protein. , 1996, Biochemistry.

[18]  S. F. Lienin,et al.  Anisotropic Intramolecular Backbone Dynamics of Ubiquitin Characterized by NMR Relaxation and MD Computer Simulation , 1998 .

[19]  Benjamin J. Wylie,et al.  Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. , 2007, The journal of physical chemistry. B.

[20]  S. Becker,et al.  Probing molecular motion by double-quantum (13C,13C) solid-state NMR spectroscopy: application to ubiquitin. , 2010, Journal of the American Chemical Society.

[21]  K. Wilkinson,et al.  Alcohol-induced conformational changes of ubiquitin. , 1986, Archives of biochemistry and biophysics.

[22]  T. Oas,et al.  Conformational selection or induced fit: A flux description of reaction mechanism , 2009, Proceedings of the National Academy of Sciences.

[23]  G. Kozlov,et al.  Structural Basis of Ubiquitin Recognition by the Ubiquitin-associated (UBA) Domain of the Ubiquitin Ligase EDD* , 2007, Journal of Biological Chemistry.

[24]  Rachel W. Martin,et al.  Assignments of carbon NMR resonances for microcrystalline ubiquitin. , 2004, Journal of the American Chemical Society.

[25]  B. Meier,et al.  Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[26]  A. Ramanathan,et al.  Computational identification of slow conformational fluctuations in proteins. , 2009, The journal of physical chemistry. B.

[27]  A. Bax,et al.  Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology , 2007, Journal of biomolecular NMR.

[28]  Kalle Gehring,et al.  Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b. , 2007, Molecular cell.

[29]  S. Becker,et al.  High‐Resolution Solid‐State NMR Studies on Uniformly [13C,15N]‐Labeled Ubiquitin , 2005, Chembiochem : a European journal of chemical biology.

[30]  B. Meier,et al.  Solid-state NMR spectroscopy of 10% 13C labeled ubiquitin: spectral simplification and stereospecific assignment of isopropyl groups , 2006, Journal of biomolecular NMR.

[31]  Wim J. N. Meester,et al.  Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate* , 2005, Journal of Biological Chemistry.

[32]  A. Wand,et al.  Assignment of the backbone resonances for microcrystalline ubiquitin. , 2004, Journal of the American Chemical Society.

[33]  A. D'arcy,et al.  Structural Basis of Ubiquitin Recognition by the Deubiquitinating Protease USP2 , 2006, Structure.

[34]  Xiaodong Cheng,et al.  The Ubiquitin Binding Domain ZnF UBP Recognizes the C-Terminal Diglycine Motif of Unanchored Ubiquitin , 2006, Cell.

[35]  D. Fushman,et al.  Structural properties of polyubiquitin chains in solution. , 2002, Journal of molecular biology.

[36]  T. Muir,et al.  Synthetic, structural and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin. , 1994, The Biochemical journal.

[37]  H. Oschkinat,et al.  Backbone and Side‐Chain 13C and 15N Signal Assignments of the α‐Spectrin SH3 Domain by Magic Angle Spinning Solid‐State NMR at 17.6 Tesla , 2001, Chembiochem : a European journal of chemical biology.

[38]  G. Makhatadze,et al.  Conformational dynamics and structural plasticity play critical roles in the ubiquitin recognition of a UIM domain. , 2010, Journal of molecular biology.

[39]  C. Bugg,et al.  Structure of ubiquitin refined at 1.8 A resolution. , 1987, Journal of molecular biology.

[40]  A. Wand,et al.  Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. , 2005, Journal of the American Chemical Society.

[41]  H. Kalbitzer,et al.  Protein NMR Spectroscopy. Principles and Practice , 1997 .

[42]  Ad Bax,et al.  Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase , 1998 .

[43]  Nico Tjandra,et al.  Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation. , 2005, Journal of magnetic resonance.