Fractionated matrix composition in CV3 Vigarano and alteration processes on the CV parent asteroid

Abstract— Although CV3 Vigarano is one of the most primitive CV chondrites, it has lost most of the S from the matrix; matrix Na is also depleted relative to the concentration in bulk CV chondrites. We used a matrix-grid technique to study thirteen 50 × 50 μm regions in Vigarano; in each area, we used an electron microprobe to gather data with an electron beam 3 μm in width. We found two end-member types of matrix textures. One is coarse and porous, has lower Fe contents and lower analytical totals; it appears to be contaminated with comminuted chondrule debris. The other is finer grained and appears smooth; its mean composition has higher Fe, but lower S and Al contents, than the coarse matrix areas. Our tentative interpretation is that the larger grain size of the coarse areas resulted from the admixing of comminuted chondrule materials, and thus that the initial fraction of nebular fines was higher in the fine matrix regions. Aside from volatiles, the overall composition of Vigarano matrix is similar to that observed in matrix-grid studies of other carbonaceous chondrites: Al, Si, Fe, and Mn have high whole-chondrite-normalized abundance ratios; Ca concentrations are low and highly variable. Because asteroidal alteration effects are present in our sample, it is difficult to resolve nebular signatures in the compositions of the grid areas.

[1]  A. Rubin,et al.  Matrix and whole‐rock fractionations in the Acfer 094 type 3.0 ungrouped carbonaceous chondrite , 2010 .

[2]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[3]  J. Wasson,et al.  Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites , 1998, Nature.

[4]  S. Richardson,et al.  The composition of carbonaceous chondrite matrix , 1977 .

[5]  H. Wänke,et al.  Alkali differentiation in LL-chondrites , 1983 .

[6]  H. McSween Petrographic variations among carbonaceous chondrites of the Vigarano type , 1977 .

[7]  M. Prinz,et al.  Fayalitic olivine in CV3 chondrite matrix and dark inclusions: A nebular origin , 1998 .

[8]  E. Scott,et al.  Shock metamorphism of carbonaceous chondrites , 1991 .

[9]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[10]  K. Keil,et al.  A clast of Bali‐like oxidized CV material in the reduced CV chondrite breccia Vigarano , 2000 .

[11]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[12]  A. Brearley,et al.  Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites , 2000 .

[13]  Tomoki Nakamura,et al.  Impact-Induced Textural Changes of CV Carbonaceous Chondrites: Experimental Reproduction , 2000 .

[14]  E. Scott,et al.  Matrix material in type 3 chondrites - Occurrence, heterogeneity and relationship with chondrules , 1984 .

[15]  J. Wasson Evaporation of nebular fines during chondrule formation , 2008 .

[16]  A. Brearley Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components , 1993 .

[17]  E. Scott,et al.  Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System , 2004 .

[18]  G. Huss Genetic Relationships between Chondrules, Fine-grained Rims, and Interchondrule Matrix , 2006 .

[19]  K. Tomeoka,et al.  Phyllosilicate-rich chondrule rims in the vigarano cv3 chondrite: evidence for parent-body processes , 2000 .

[20]  A. Krot,et al.  Distribution of Ca-Fe-Silicates in CV3 Chondrites: Possible Controls by Parent-Body Compaction , 2002 .

[21]  M. Zolensky,et al.  Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998) , 1999, Science.

[22]  A. Rubin Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments , 2010 .

[23]  E. Anders,et al.  Isotopic anomalies of noble gases in meteorites and their origins—IV. C3 (Ornans) carbonaceous chondrites , 1979 .

[24]  R. Clayton,et al.  Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. , 1994, Geochimica et cosmochimica acta.

[25]  A. Rubin,et al.  Clastic matrix in EH3 chondrites , 2009 .

[26]  D. Britt,et al.  Density, porosity, and magnetic susceptibility of carbonaceous chondrites , 2011 .

[27]  L. Bonal,et al.  Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter , 2006 .

[28]  D. Heymann,et al.  Noble gases in carbonaceous chondrites , 1970 .

[29]  A. Rubin Collisional facilitation of aqueous alteration of CM and CV carbonaceous chondrites , 2012 .

[30]  J. P. Greenwood,et al.  Oxygen isotopes in R-chondrite magnetite and olivine: links between R chondrites and ordinary chondrites , 2000 .

[31]  A. Brearley,et al.  The onset of metamorphism in ordinary and carbonaceous chondrites , 2005 .

[32]  A. Rubin,et al.  THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .

[33]  M. Zolensky,et al.  Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? , 1995 .

[34]  A. Rubin,et al.  Composition of matrix in the CR chondrite LAP 02342 , 2009 .

[35]  P. Ramdohr The Opaque Minerals in Stony Meteorites , 1972 .

[36]  O. Müller,et al.  The Stony Meteorite Krähenberg , 1969 .

[37]  V. Formisano,et al.  The Renazzo meteorite , 1993 .

[38]  H. Nagahara Matrices of type 3 ordinary chondrites—primitive nebular records , 1984 .

[39]  J. D. Laeter,et al.  Meteorites: A Journey Through Space and Time , 2002 .

[40]  K. Keil,et al.  The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites , 1981 .