Performance of Confidence Intervals in Regression Models with Unbalanced One-Fold Nested Error Structures

Abstract In this article we consider the problem of constructing confidence intervals for a linear regression model with unbalanced nested error structure. A popular approach is the likelihood-based method employed by PROC MIXED of SAS. In this article, we examine the ability of MIXED to produce confidence intervals that maintain the stated confidence coefficient. Our results suggest that intervals for the regression coefficients work well, but intervals for the variance component associated with the primary level cannot be recommended. Accordingly, we propose alternative methods for constructing confidence intervals on the primary level variance component. Computer simulation is used to compare the proposed methods. A numerical example and SAS code are provided to demonstrate the methods.