Dicopper(II,II) and dicopper(I,II) complexes of a series of dinucleating macrocycles

The dinucleating macrocycles H2Lm,n containing two 2,6-di(aminomethyl)-4-methylphenol entities combined through two alkane chains, (CH2)m and (CH2)n, at the amine nitrogens have been prepared for the (m,n) sets (2,3), (2,4), (2,5), (3,3) and (3,4). The dinuclear copper(II) complexes having general formula [Cu2Lm,n][ClO4]2 have been prepared. Cryomagnetic investigations (80–300 K) reveal a strong antiferromagnetic spin-exchange between the copper(II) ions within each complex (J based on ℋ=–2JS1S2 in the range –345 to –255 cm–1). The cyclic voltammograms show two reduction couples, CuIICuII–CuICuII and CuICuII–CuICuI. The comproportionation constants Kcom for the mixed-valence CuICuII complexes have been determined electrochemically. The Kcom value increase in the order of the macrocycles (L2,3)2– < (L2,4)2– < (L2,5)2– and (L3,3)2– < (L3,4)2–. The CuICuII mixed-valence state is shown to be ‘spin-trapped’(Class I) for all the complexes based on ESR spectra.

[1]  K. K. Nanda,et al.  Carboxylate bridging of amino acids in dinuclear macrocyclic nickel(II) complexes , 1992 .

[2]  M. Tadokoro,et al.  Template synthesis, structure and characterization of NiII2PbII and CuII2PbII complexes of macrocycles with a N4O2 donor set , 1991 .

[3]  P. A. Vigato,et al.  The activation of small molecules by dinuclear complexes of copper and other metals , 1990 .

[4]  H. Sakiyama,et al.  Cobalt(II)–lanthanoid(III)(Ln = La, Nd, or Gd) complexes of N,N′-ethylenebis(3-carboxysalicylideneimine). Interaction of ligating groups on the Co–Ln centre , 1990 .

[5]  N. Koga,et al.  Study of the Effect of Structural Factors on Magnetism of Di-μ-alkoxodicopper(II) Complexes by Ab Initio MO Calculations , 1988 .

[6]  C. Bender,et al.  EPR spectral evidence for a dinuclear active site in the Lactobacillus plantarum manganese catalase , 1988 .

[7]  J. Charland,et al.  Copper (II) complexes of a macrocyclic binucleating ligand which exhibit two-electron oxidation and two-electron reduction. Structure of [Cu2(C24H34N4O2)(CH3OH)2](ClO4)2, a macrocyclic dicopper(II) complex involving coordinated methanol , 1987 .

[8]  J. Charland,et al.  Synthesis, structure, and electrochemistry of a novel macrocyclic dicopper(II) complex. Four one-electron-transfer steps producing binuclear copper(III) and copper(I) species and mixed-valence-state species , 1987 .

[9]  P. A. Vigato,et al.  Syntheses, structure and electrochemical characterization of homo- and heterodinuclear copper complexes with compartmental ligands , 1987 .

[10]  O. Kahn Magnetism of the heteropolymetallic systems , 1987 .

[11]  F. Arena,et al.  How a bifunctional complex drives reactivity of carbon dioxide-like molecules: sodium [N,N'-ethylenebis(salicylaldiminato)]cobaltate(I) promotion of the reductive coupling of molecules resembling carbon dioxide , 1986 .

[12]  G. Allgood,et al.  Characterization of a manganese-containing catalase from the obligate thermophile Thermoleophilum album , 1986, Journal of bacteriology.

[13]  D. Busch,et al.  Intramolecular ferromagnetic interactions in polynuclear metal complexes , 1986 .

[14]  Bibhutosh Adhikary,et al.  Dinuclear metal complexes. Part 4. Electrochemical studies of macrocyclic dicopper(II) complexes. Investigation of the effect of solvents, donor groups, and steric constraints on the stability of mixed-valence copper(II)–copper(I) complexes , 1986 .

[15]  K. Nag,et al.  Dinuclear metal complexes. Part 3. Preparation and properties of hydroxo-bridged dicopper(II) complexes , 1984 .

[16]  D. Hendrickson,et al.  Intramolecular electron transfer in a series of mixed-valence copper(II)-copper(I) complexes , 1983 .

[17]  E. Solomon Electronic and geometric structure-function correlations of the coupled binuclear copper active site , 1983 .

[18]  K. Nag,et al.  Dinuclear metal complexes. Part 2. Synthesis, characterisation, and electrochemical studies of macrocyclic dicopper(II) complexes , 1983 .

[19]  E. Solomon,et al.  Active sites in copper proteins an electronic structure overview , 1983 .

[20]  Masaaki Nakamura,et al.  CORRELATION BETWEEN REDUCTION POTENTIAL AND CHARGE-TRANSFER FREQUENCY OF ALKOXO-BRIDGED BINUCLEAR COPPER(II) COMPLEXES OF VARIOUS TRIDENTATE LIGANDS , 1982 .

[21]  M. Melnik Study of the relation between the structural data and magnetic interaction in oxo-bridged binuclear copper(II) compounds , 1982 .

[22]  C. Spiro,et al.  The synthesis, redox properties, and ligand binding of heterobinuclear transition-metal macrocyclic ligand complexes. Measurement of an apparent delocalization energy in a mixed-valent copper(I)copper(II) complex , 1981 .

[23]  C. Spiro,et al.  BINUCLEAR COMPLEXES OF MACROCYCLIC LIGANDS: VARIATION OF MAGNETIC EXCHANGE INTERACTION IN A SERIES OF SIX-COORDINATE IRON(II), COBALT(II), AND NICKEL(II) COMPLEXES AND THE X-RAY STRUCTURE OF A BINUCLEAR IRON(II) MACROCYCLIC LIGAND COM , 1981 .

[24]  D. Hendrickson,et al.  Magnetic exchange interactions in binuclear transition-metal complexes. 20. Variation in magnetic exchange interaction for a series of metal(II) complexes of a binucleating ligand , 1979 .

[25]  C. Koval,et al.  Binuclear complexes of macrocyclic ligands: electrochemical and spectral properties of homobinuclear Cu/sup II/Cu/sup II/, Cu/sup II/Cu/sup I/, and Cu/sup I/Cu/sup I/ species including an estimated intramolecular electron transfer rate , 1979 .

[26]  B. Durham,et al.  Chemical Reactivity in Constrained Systems , 1979 .

[27]  J. D. Lamb,et al.  Thermodynamics and Kinetics of Cation-Macrocycle Interaction , 1979 .

[28]  C. Koval,et al.  BINUCLEAR COMPLEXES OF MACROCYCLIC LIGANDS. A MIXED-VALENCE COPPER(II)-COPPER(I) COMPLEX WHICH EXHIBITS UNUSUAL TEMPERATURE-DEPENDENT BEHAVIOR , 1977 .

[29]  R. Robson,et al.  Complexes of binucleating ligands. VIII. The preparation, structure and properties of some mixed valence cobalt(II)—cobalt(III) complexes of a macrocyclic binucleating ligand , 1976 .

[30]  A. Addison One-electron redox processes at binuclear copper centers , 1976 .

[31]  B. Hoskins,et al.  The crystal structure of a binuclear cobalt(II) complex of a macrocyclic ligand , 1975 .

[32]  B. Hoskins,et al.  The crystal structures of two isomers of a macrocyclic binuclear compound each containing both divalent and trivalent cobalt , 1975 .

[33]  Y. Nishida,et al.  THE NEW TRINUCLEAR COPPER(II) COMPLEXES WITH N,N-DIALKYL DIAMINOALCOHOLS , 1974 .

[34]  Y. Nonaka,et al.  Copper(II) Complexes with Some Aliphatic Diaminealcohols , 1973 .

[35]  H. O̅kawa,et al.  New template syntheses of some macrocycles capable of forming binuclear metal complexes , 1971 .

[36]  E. Sinn Magnetic exchange in polynuclear metal complexes , 1970 .

[37]  B. Goodman,et al.  Electron Spin Resonance of Transition Metal Complexes , 1970 .

[38]  R. Robson,et al.  Complexes of binucleating ligands. III. Novel complexes of a macrocyclic binucleating ligand , 1970 .

[39]  Dale W. Margerum,et al.  Macrocyclic effect on the stability of copper(II) tetramine complexes , 1969 .

[40]  F. Urbach,et al.  Circular dichroism of square-planar, tetradentate Schiff base chelates of copper(II) , 1969 .

[41]  P. Ball The magnetic properties of polynuclear transition metal complexes , 1969 .

[42]  Peter Day,et al.  Mixed Valence Chemistry-A Survey and Classification , 1968 .

[43]  B. Bosnich An interpretation of the circular dichroism and electronic spectra of salicylaldimine complexes of square-coplanar diamagnetic nickel(II) , 1968 .

[44]  K. Bowers,et al.  Anomalous paramagnetism of copper acetate , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.