Network-based approaches for analysis of complex biological systems.

[1]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[2]  David Maxwell Chickering,et al.  Dependency Networks for Collaborative Filtering and Data Visualization , 2000, UAI.

[3]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[4]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[5]  Chiara Sabatti,et al.  Network component analysis: Reconstruction of regulatory signals in biological systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[7]  Tommi S. Jaakkola,et al.  Physical Network Models , 2004, J. Comput. Biol..

[8]  Martin A. Nowak,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004 .

[9]  Rachel B. Brem,et al.  The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Ron Shamir,et al.  A Probabilistic Methodology for Integrating Knowledge and Experiments on Biological Networks , 2006, J. Comput. Biol..

[11]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[12]  D. Husmeier,et al.  Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge , 2007, Statistical applications in genetics and molecular biology.

[13]  Olga G. Troyanskaya,et al.  Nested effects models for high-dimensional phenotyping screens , 2007, ISMB/ECCB.

[14]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[15]  P. Robinson,et al.  Walking the interactome for prioritization of candidate disease genes. , 2008, American journal of human genetics.

[16]  Sach Mukherjee,et al.  Network inference using informative priors , 2008, Proceedings of the National Academy of Sciences.

[17]  B. Bernstein,et al.  Chromatin state maps: new technologies, new insights. , 2008, Current opinion in genetics & development.

[18]  E. Fraenkel,et al.  Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks , 2009, Science Signaling.

[19]  Aviv Regev,et al.  Transcriptional Regulatory Circuits: Predicting Numbers from Alphabets , 2009, Science.

[20]  D. Karger,et al.  Bridging the gap between high-throughput genetic and transcriptional data reveals cellular pathways responding to alpha-synuclein toxicity , 2009 .

[21]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[22]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[23]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[24]  Riet De Smet,et al.  Advantages and limitations of current network inference methods , 2010, Nature Reviews Microbiology.

[25]  Yoo-Ah Kim,et al.  Modeling information flow in biological networks , 2011, Physical biology.

[26]  Eli Upfal,et al.  Algorithms for Detecting Significantly Mutated Pathways in Cancer , 2010, RECOMB.

[27]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.

[28]  Teresa M. Przytycka,et al.  Chapter 5: Network Biology Approach to Complex Diseases , 2012, PLoS Comput. Biol..

[29]  A. Butte,et al.  Leveraging models of cell regulation and GWAS data in integrative network-based association studies , 2012, Nature Genetics.

[30]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[31]  Y. Moreau,et al.  Computational tools for prioritizing candidate genes: boosting disease gene discovery , 2012, Nature Reviews Genetics.

[32]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[33]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[34]  Martin Renqiang Min,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[35]  Ziv Bar-Joseph,et al.  Identifying proteins controlling key disease signaling pathways , 2013, Bioinform..

[36]  James A. Thomson,et al.  Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks , 2013, PLoS Comput. Biol..

[37]  A. Regev,et al.  Dynamic regulatory network controlling Th17 cell differentiation , 2013, Nature.

[38]  Integration of Metabolic and Gene Regulatory Networks Modulates the C. elegans Dietary Response , 2013, Cell.

[39]  Steffen Klamt,et al.  Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. , 2013, Molecular bioSystems.

[40]  Robert V Farese,et al.  Mass Spectrometry – Based Proteomics and Network Biology , 2013 .

[41]  Or Zuk,et al.  Identification of transcriptional regulators in the mouse immune system , 2013, Nature Immunology.

[42]  Wendy A Bickmore,et al.  The spatial organization of the human genome. , 2013, Annual review of genomics and human genetics.

[43]  Richard Bonneau,et al.  Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks , 2013, Bioinform..

[44]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[45]  R. Young,et al.  Transcriptional Regulation and Its Misregulation in Disease , 2013, Cell.

[46]  Irit Gat-Viks,et al.  A minimum-labeling approach for reconstructing protein networks across multiple conditions , 2013, Algorithms for Molecular Biology.

[47]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[48]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[49]  Thomas Horn,et al.  GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update , 2012, Nucleic Acids Res..

[50]  Sean C. Bendall,et al.  Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development , 2014, Cell.

[51]  Mark Craven,et al.  Inferring Host Gene Subnetworks Involved in Viral Replication , 2014, PLoS Comput. Biol..

[52]  Thomas Sauerwald,et al.  HIT'nDRIVE: Multi-driver Gene Prioritization Based on Hitting Time , 2014, RECOMB.

[53]  Jennifer L Reed,et al.  Refining metabolic models and accounting for regulatory effects. , 2014, Current opinion in biotechnology.

[54]  Samantha A. Morris,et al.  CellNet: Network Biology Applied to Stem Cell Engineering , 2014, Cell.

[55]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[56]  Christian Borgs,et al.  Sharing Information to Reconstruct Patient-Specific Pathways in Heterogeneous Diseases , 2013, Pacific Symposium on Biocomputing.

[57]  Sean C. Bendall,et al.  Conditional density-based analysis of T cell signaling in single-cell data , 2014, Science.

[58]  Ziv Bar-Joseph,et al.  Multitask Learning of Signaling and Regulatory Networks with Application to Studying Human Response to Flu , 2014, PLoS Comput. Biol..

[59]  David B. Berry,et al.  Pathway connectivity and signaling coordination in the yeast stress-activated signaling network , 2014, Molecular systems biology.

[60]  Chien-Hua Peng,et al.  Causal inference of gene regulation with subnetwork assembly from genetical genomics data , 2013, Nucleic acids research.

[61]  Mehdi M. Kashani,et al.  Large-Scale Genetic Perturbations Reveal Regulatory Networks and an Abundance of Gene-Specific Repressors , 2014, Cell.

[62]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[63]  Joe W. Gray,et al.  Causal network inference using biochemical kinetics , 2014, Bioinform..

[64]  Eric P. Xing,et al.  Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm , 2014, PLoS Comput. Biol..

[65]  C. Leslie,et al.  Linking signaling pathways to transcriptional programs in breast cancer , 2014, Genome research.

[66]  R. Gordân,et al.  Protein–DNA binding: complexities and multi-protein codes , 2013, Nucleic acids research.

[67]  Corey Nislow,et al.  The Yeast Deletion Collection: A Decade of Functional Genomics , 2014, Genetics.

[68]  Voichita D. Marinescu,et al.  Efficient exploration of pan-cancer networks by generalized covariance selection and interactive web content , 2015, Nucleic acids research.

[69]  Edward J. O'Brien,et al.  Using Genome-scale Models to Predict Biological Capabilities , 2015, Cell.

[70]  Elhanan Borenstein,et al.  The discovery of integrated gene networks for autism and related disorders , 2015, Genome research.

[71]  Irit Gat-Viks,et al.  A statistical framework for revealing signaling pathways perturbed by DNA variants , 2015, Nucleic acids research.

[72]  Teresa M. Przytycka,et al.  MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types , 2015, Bioinform..

[73]  Christie S. Chang,et al.  The BioGRID interaction database: 2015 update , 2014, Nucleic Acids Res..

[74]  Christina S. Leslie,et al.  Early enhancer establishment and regulatory locus complexity shape transcriptional programs in hematopoietic differentiation , 2015, Nature Genetics.

[75]  M. Ritchie,et al.  Methods of integrating data to uncover genotype–phenotype interactions , 2015, Nature Reviews Genetics.

[76]  B. Göttgens Regulatory network control of blood stem cells. , 2015, Blood.

[77]  Fan Zhu,et al.  Regulatory network inferred using expression data of small sample size: application and validation in erythroid system , 2015, Bioinform..

[78]  Marinka Zitnik,et al.  Gene network inference by fusing data from diverse distributions , 2015, Bioinform..

[79]  Jing Guo,et al.  Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development , 2015, Bioinform..

[80]  J. Buhmann,et al.  Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome , 2015, Molecular systems biology.

[81]  Yin Liu,et al.  Integrating full spectrum of sequence features into predicting functional microRNA-mRNA interactions , 2015, Bioinform..

[82]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[83]  Daniel S. Himmelstein,et al.  Understanding multicellular function and disease with human tissue-specific networks , 2015, Nature Genetics.

[84]  Qian Zhu,et al.  Tissue-aware data integration approach for the inference of pathway interactions in metazoan organisms , 2015, Bioinform..

[85]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[86]  Holger Fröhlich,et al.  biRte: Bayesian inference of context-specific regulator activities and transcriptional networks , 2015, Bioinform..

[87]  Daphne Koller,et al.  Sharing and Specificity of Co-expression Networks across 35 Human Tissues , 2014, PLoS Comput. Biol..

[88]  Ali Shojaie,et al.  Selection and estimation for mixed graphical models. , 2013, Biometrika.

[89]  Pei Wang,et al.  Integrative random forest for gene regulatory network inference , 2015, Bioinform..

[90]  Guido Sanguinetti,et al.  Combining tree-based and dynamical systems for the inference of gene regulatory networks , 2015 .

[91]  Adam M. Feist,et al.  Next-generation genome-scale models for metabolic engineering. , 2015, Current opinion in biotechnology.

[92]  Mario L. Arrieta-Ortiz,et al.  An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network , 2015, Molecular systems biology.

[93]  Fabian J. Theis,et al.  Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data , 2015, Bioinform..

[94]  Kern Rei Chng,et al.  Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles , 2015, Nucleic acids research.

[95]  Bin Gao,et al.  Learning directed acyclic graphical structures with genetical genomics data , 2015, Bioinform..

[96]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[97]  Yoshihide Hayashizaki,et al.  A predictive computational framework for direct reprogramming between human cell types , 2016, Nature Genetics.

[98]  Jun Zhu,et al.  Inferred miRNA activity identifies miRNA-mediated regulatory networks underlying multiple cancers , 2015, Bioinform..

[99]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[100]  Jeff Vierstra,et al.  Genomic footprinting , 2016, Nature Methods.

[101]  Daniel Marbach,et al.  Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases , 2016, Nature Methods.

[102]  E. Gusmão,et al.  Analysis of computational footprinting methods for DNase sequencing experiments , 2016, Nature Methods.