Hybrid Fractal Shape Planar Monopole Antenna Covering Multiband Wireless Communications With MIMO Implementation for Handheld Mobile Devices

A hybrid fractal shape planar monopole antenna covering multiple wireless communication bands is presented for multiple-input-multiple-output (MIMO) implementation for handheld mobile devices. The proposed structure is the combination of Minkowski island curve and Koch curve fractals. It is placed with edge to edge separation of 0.16λ0 at 1.75 GHz. The T-shape strip is inserted and rectangular slot is etched at top side of ground plane, respectively to improve the impedance matching and isolation between the antennas. A measured impedance matching fractional bandwidths ( S11 ≤ -10 dB) are 14% from 1.65 GHz to 1.9 GHz for the band 1 and 80% from 2.68 GHz to 6.25 GHz for the band 2. Acceptable agreement is obtained between the simulated and measured antenna performance parameters. These characteristics demonstrate that the proposed antenna is an attractive candidate for handheld mobile devices.

[1]  Richard W. Ziolkowski,et al.  Performance Characteristics of Planar and Three-Dimensional Versions of a Frequency-Agile Electrically Small Antenna , 2014, IEEE Antennas and Propagation Magazine.

[2]  R. Ziolkowski,et al.  A Frequency Agile, Ultralow‐Profile, Complementary Split Ring Resonator‐Based Electrically Small Antenna , 2013 .

[3]  Y. Choukiker,et al.  Hybrid fractal shape planar monopole antenna with MIMO implimentation covering multiband wireless communications for handheld devices , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[4]  A. N. Kulkarni,et al.  Frequency Reconfigurable Microstrip Loop Antenna Covering LTE Bands With MIMO Implementation and Wideband Microstrip Slot Antenna all for Portable Wireless DTV Media Player , 2013, IEEE Transactions on Antennas and Propagation.

[5]  Richard J. Langley,et al.  Compact Low Frequency Varactor Loaded Tunable SRR Antenna , 2013, IEEE Transactions on Antennas and Propagation.

[6]  A. Petosa,et al.  An Overview of Tuning Techniques for Frequency-Agile Antennas , 2012, IEEE Antennas and Propagation Magazine.

[7]  Satish K. Sharma,et al.  A multiband antenna with MIMO implementation for USB dongle size wireless devices , 2012 .

[8]  Richard W. Ziolkowski,et al.  Design and measurements of an electrically small, broad bandwidth, non- Foster circuit-augmented protractor antenna , 2012 .

[9]  Tatsuo Itoh,et al.  Metamaterial-Based Antennas , 2012, Proceedings of the IEEE.

[10]  K. Sarabandi,et al.  Low Profile, Miniaturized, Inductively Coupled Capacitively Loaded Monopole Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[11]  Qing-Xin Chu,et al.  A Compact Wideband MIMO Antenna With Two Novel Bent Slits , 2012, IEEE Transactions on Antennas and Propagation.

[12]  P. S. Excell,et al.  Wideband Printed MIMO/Diversity Monopole Antenna for WiFi/WiMAX Applications , 2012, IEEE Transactions on Antennas and Propagation.

[13]  Yogesh Kumar Choukiker,et al.  Design of wideband fractal antenna with combination of fractal geometries , 2011, 2011 8th International Conference on Information, Communications & Signal Processing.

[14]  Peng Jin,et al.  Metamaterial-Inspired Engineering of Antennas , 2011, Proceedings of the IEEE.

[15]  Hao Xin,et al.  Electrically Small GPS L1 Rectennas , 2011, IEEE Antennas and Wireless Propagation Letters.

[16]  Shaoqiu Xiao,et al.  Wide-Angle Scanning Phased Array With Pattern Reconfigurable Elements , 2011, IEEE Transactions on Antennas and Propagation.

[17]  R. Ziolkowski,et al.  Multi-Frequency, Linear and Circular Polarized, Metamaterial-Inspired, Near-Field Resonant Parasitic Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[18]  Hui Li,et al.  An Electrically Small Frequency Reconfigurable Antenna With a Wide Tuning Range , 2011, IEEE Antennas and Wireless Propagation Letters.

[19]  Homayoon Oraizi,et al.  Miniaturized UWB Monopole Microstrip Antenna Design by the Combination of Giusepe Peano and Sierpinski Carpet Fractals , 2011, IEEE Antennas and Wireless Propagation Letters.

[20]  P. Zetterberg,et al.  Printed MIMO antenna system of four closely-spaced elements with large bandwidth and high isolation , 2010 .

[21]  Cong Ling,et al.  UWB portable printed monopole array design for MIMO communications , 2010 .

[22]  Miguel Ferrando-Bataller,et al.  Modal Analysis and Design of Band-Notched UWB Planar Monopole Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[23]  Giacomo Oliveri,et al.  Hybrid Design of a Fractal-Shaped GSM/UMTS Antenna , 2010 .

[24]  Seong-Ook Park,et al.  Quad-Band MIMO Antenna Array for Portable Wireless Communications Terminals , 2009, IEEE Antennas and Wireless Propagation Letters.

[25]  A. Erentok,et al.  Metamaterial-Inspired Efficient Electrically Small Antennas , 2008, IEEE Transactions on Antennas and Propagation.

[26]  Guangming Wang,et al.  Small-Size Microstrip Patch Antennas Combining Koch and Sierpinski Fractal-Shapes , 2008, IEEE Antennas and Wireless Propagation Letters.

[27]  Zhengwei Du,et al.  A Novel Dual-Band Printed Diversity Antenna for Mobile Terminals , 2007, IEEE Transactions on Antennas and Propagation.

[28]  Ekmel Ozbay,et al.  Electrically small split ring resonator antennas , 2007 .

[29]  Ekmel Ozbay,et al.  Radiation properties of a split ring resonator and monopole composite , 2007 .

[30]  H. Thal New Radiation$Q$Limits for Spherical Wire Antennas , 2006, IEEE Transactions on Antennas and Propagation.

[31]  Moreira,et al.  Microstrip fractal antennas for multistandard terminals , 2004, IEEE Antennas and Wireless Propagation Letters.

[32]  H. Peitgen,et al.  Chaos and Fractals , 2004 .

[33]  Hyundong Shin,et al.  Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole , 2003, IEEE Trans. Inf. Theory.

[34]  S. Best,et al.  On the performance properties of the Koch fractal and other bent wire monopoles , 2003 .

[35]  D. Werner,et al.  An overview of fractal antenna engineering research , 2003 .

[36]  Carles Puente,et al.  Small and high‐directivity bow‐tie patch antenna based on the Sierpinski fractal , 2001 .

[37]  C. Puente,et al.  Bowtie microstrip patch antenna based on the Sierpinski fractal , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[38]  S. Toutain,et al.  Patch antenna size reduction by means of inductive slots , 2001 .

[39]  J. Romeu,et al.  The Koch monopole: a small fractal antenna , 2000 .

[40]  Laurent Desclos,et al.  SIZE REDUCTION OF PLANAR PATCH ANTENNA BY MEANS OF SLOT INSERTION , 2000 .

[41]  Raj Mittra,et al.  Frontiers in electromagnetics , 1999 .

[42]  Jordi Romeu Robert,et al.  On the behavior of the Sierpinski multiband fractal antenna , 1998 .

[43]  Jordi Romeu,et al.  On the behavior of the Sierpinski multiband fractal antenna , 1998 .

[44]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[45]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[46]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[47]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .