Mechanisms of plastic deformation in ultrafine-grained aluminium – In-situ and ex-post studies

[1]  J. Rajagopalan,et al.  Grain rotations in ultrafine-grained aluminum films studied using in situ TEM straining with automated crystal orientation mapping , 2017 .

[2]  I. Beyerlein,et al.  Coupled crystal orientation-size effects on the strength of nano crystals , 2016, Scientific Reports.

[3]  A. Kobler,et al.  In situ observation of deformation processes in nanocrystalline face-centered cubic metals , 2016, Beilstein journal of nanotechnology.

[4]  J. Rajagopalan,et al.  Texture dependent strain rate sensitivity of ultrafine-grained aluminum films , 2016 .

[5]  T. Tsuru,et al.  Heterogeneous plastic deformation and Bauschinger effect in ultrafine-grained metals: atomistic simulations , 2016 .

[6]  M. Lewandowska,et al.  Dislocation Substructure Evolution during Hydrostatic Extrusion of Al-Mg-Si Alloy , 2015 .

[7]  Liu Chengqi,et al.  Microstructure evolution and strengthening mechanisms of cold-drawn commercially pure aluminum wire , 2015 .

[8]  M. Lewandowska,et al.  Grain refinement in technically pure aluminium plates using incremental ECAP processing , 2015 .

[9]  Michael R. Maughan,et al.  A stochastic crystal plasticity framework for deformation of micro-scale polycrystalline materials , 2015 .

[10]  I. M. Robertson,et al.  Dislocation interactions with grain boundaries , 2014 .

[11]  K. Kurzydłowski,et al.  Precipitation strengthening of ultrafine-grained Al–Mg–Si alloy processed by hydrostatic extrusion , 2014 .

[12]  J. W. Morris,et al.  The effect of size on dislocation cell formation and strain hardening in aluminium , 2014 .

[13]  Brandon D. Saller,et al.  Improving the tensile ductility and uniform elongation of high-strength ultrafine-grained Al alloys by lowering the grain boundary misorientation angle , 2014 .

[14]  R. Valiev,et al.  Dislocation emission from deformation-distorted grain boundaries in ultrafine-grained materials , 2014 .

[15]  T. Tsuru,et al.  Crystal plasticity modeling and simulation considering the behavior of the dislocation source of ultrafine-grained metal , 2014 .

[16]  K. Shizawa,et al.  Modeling and simulation on ultrafine-graining based on multiscale crystal plasticity considering dislocation patterning , 2013 .

[17]  J. Raskin,et al.  Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films : an in situ TEM study , 2013 .

[18]  I. Ovid’ko,et al.  Grain boundary rotations in solids. , 2012, Physical review letters.

[19]  J. G. Contreras,et al.  Pion, Kaon, and Proton Production in Central Pb-Pb Collisions at √sNN=2.76 TeV , 2012, 1208.1974.

[20]  I. Ovid’ko,et al.  Enhanced dislocation emission from grain boundaries in nanocrystalline materials , 2012 .

[21]  H. Mughrabi,et al.  In situ TEM observations of reverse dislocation motion upon unloading of tensile-deformed UFG aluminium , 2010 .

[22]  T. Langdon,et al.  ENHANCED DUCTILITY OF NANOCRYSTALLINE AND ULTRAFINE-GRAINED METALS , 2012 .

[23]  L. Kestens,et al.  Microstructural and texture changes in severely deformed aluminum alloys , 2011 .

[24]  T. Langdon,et al.  Microstructural evolution in high purity aluminum processed by ECAP , 2009 .

[25]  W. Blum,et al.  A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity , 2009 .

[26]  A. Couret,et al.  The Hall–Petch law investigated by means of in situ straining experiments in lamellar TiAl and deformed Al , 2009, Microscopy research and technique.

[27]  Dong-Yol Yang,et al.  Investigation of microstructure characteristics of commercially pure aluminum during equal channel angular extrusion , 2008 .

[28]  N. Hansen,et al.  Strengthening mechanisms in nanostructured aluminum , 2008 .

[29]  M. E. Kassner,et al.  Transmission Electron Microscopy Study of Strain-Induced Low- and High-Angle Boundary Development in Equal-Channel Angular-Pressed Commercially Pure Aluminum , 2008 .

[30]  R. Valiev,et al.  Principles of equal-channel angular pressing as a processing tool for grain refinement , 2006 .

[31]  M. Lewandowska Mechanism of Grain Refinement in Aluminium in the Process of Hydrostatic Extrusion , 2006 .

[32]  Xiaoxu Huang,et al.  Hardening by Annealing and Softening by Deformation in Nanostructured Metals , 2006, Science.

[33]  E. Evangelista,et al.  EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equal-channel angular-pressing. , 2005, Micron.

[34]  N. Hansen,et al.  Hall–Petch relation and boundary strengthening , 2004 .

[35]  J. Bowen,et al.  Ultra-fine grain structures in aluminium alloys by severe deformation processing , 2004 .

[36]  Yinmin M Wang,et al.  Three strategies to achieve uniform tensile deformation in a nanostructured metal , 2004 .

[37]  E. Ma,et al.  Instabilities and ductility of nanocrystalline and ultrafine-grained metals , 2003 .

[38]  N. Hansen,et al.  Microstructure and strength of nickel at large strains , 2000 .

[39]  P. Sun,et al.  Characteristics of submicron grained structure formed in aluminum by equal channel angular extrusion , 2000 .

[40]  Terence G. Langdon,et al.  The process of grain refinement in equal-channel angular pressing , 1998 .

[41]  N. Hansen,et al.  Microstructure and flow stress of polycrystals and single crystals , 1998 .

[42]  R. Doherty Recrystallization and texture , 1997 .

[43]  D. Kuhlmann-wilsdorf,et al.  Overview no. 96: Evolution of F.C.C. deformation structures in polyslip , 1992 .

[44]  Doris Kuhlmann-Wilsdorf,et al.  Theory of plastic deformation: - properties of low energy dislocation structures , 1989 .

[45]  D. Kuhlmann-wilsdorf LEDS: Properties and effects of low energy dislocation structures , 1987 .

[46]  H. Fujita,et al.  Dislocation Behavior in the Vicinity of Grain Boundaries in FCC Metals and Alloys , 1983 .

[47]  R. Cahn,et al.  Textures in extruded aluminium , 1953 .