Stiffness Characteristics of Fibre-reinforced Composite Shaft Embedded with Shape Memory Alloy Wires

Frequent coast up/coast down operations of rotating shafts in the power and aerospace industry expose the flexible rotors to the risk of fatigue failures. Resonant vibrations during passage through critical speeds induce large stresses that may lead to failures. In this paper, the use of nitinol [shape memory alloy (SMA)] wires in the fibre-reinforced composite shaft, for the purpose ofmodifying shaft stiffness properties to avoid such failures, is discussed. A setup has been developed to fabricate the composite shaft (made of fibre glass and epoxy resin) embedded with pre-stressed SMA wires. Experiments have been carried out on the shaft to estimate the changes in the natural frequency of the composite shaft due to activation and deactivation ofSMA wires. The comparisonofthe experimental results with the established analytical results indicates feasibility ofvibration control using the special properties of SMA wires.