Insight into the Strong Brönsted Acid Sites on Isolated WOx-Modified Pt/Zirconium Phosphate for Glycerol Efficient Hydrodeoxygenation

[1]  Qike Jiang,et al.  A carbon-negative route for sustainable production of aromatics from biomass-derived aqueous oxygenates , 2022, Applied Catalysis B: Environmental.

[2]  Wenjun Yan,et al.  A Facile Approach to Tune WOx Species Combining Pt Catalyst for Enhanced Catalytic Performance in Glycerol Hydrogenolysis , 2021, Industrial & Engineering Chemistry Research.

[3]  Jinxiang Dong,et al.  Facilitating Pt−WOx Species Interaction for Efficient Glycerol Hydrogenolysis to 1,3‐Propanediol , 2021 .

[4]  Tao Zhang,et al.  Promoting the Effect of Au on the Selective Hydrogenolysis of Glycerol to 1,3-Propanediol over the Pt/WOx/Al2O3 Catalyst , 2021 .

[5]  Lijing Gao,et al.  Hydrogenolysis of glycerol to propanediols over silicotungstic acid catalysts intercalated with CuZnFe hydrotalcite-like compounds , 2021 .

[6]  Srinivas Darbha,et al.  Hydrogenolysis of glycerol in an aqueous medium over Pt/WO3/zirconium phosphate catalysts studied by 1H NMR spectroscopy , 2021 .

[7]  P. Praserthdam,et al.  Lewis acid transformation to Bronsted acid sites over supported tungsten oxide catalysts containing different surface WOx structures , 2020 .

[8]  Xuhai Zhu,et al.  Effect of tungsten species on selective hydrogenolysis of glycerol to 1,3-propanediol. , 2020, ChemSusChem.

[9]  Jinxiang Dong,et al.  Discovering positively charged Pt for enhanced hydrogenolysis of glycerol to 1,3-propanediol , 2020 .

[10]  Aiqin Wang,et al.  Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts , 2020, Chinese Journal of Catalysis.

[11]  Wei Zhou,et al.  Insight into the nature of Brönsted acidity of Pt-(WOx)n-H model catalysts in glycerol hydrogenolysis , 2020 .

[12]  Difan Li,et al.  Effect of Tungsten Modification on Zirconium Phosphate-Supported Pt Catalyst for Selective Hydrogenolysis of Glycerol to 1-Propanol , 2020 .

[13]  Lirong Zheng,et al.  Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis , 2019, Nature Communications.

[14]  Tao Zhang,et al.  Effective Hydrogenolysis of Glycerol to 1,3‐Propanediol over Metal‐Acid Concerted Pt/WOx/Al2O3 Catalysts , 2019, ChemCatChem.

[15]  Y. Taufiq-Yap,et al.  An Overview of Recent Research in the Conversion of Glycerol into Biofuels, Fuel Additives and other Bio-Based Chemicals , 2018, Catalysts.

[16]  Huaping Xiao,et al.  Zirconium phosphate (ZrP)-based functional materials: Synthesis, properties and applications , 2018, Materials & Design.

[17]  K. Tomishige,et al.  Perspective on catalyst development for glycerol reduction to C3 chemicals with molecular hydrogen , 2018, Research on Chemical Intermediates.

[18]  Jing Tian,et al.  Pt–WOx on monoclinic or tetrahedral ZrO2: Crystal phase effect of zirconia on glycerol hydrogenolysis to 1,3-propanediol , 2017 .

[19]  Xiaoqing Pan,et al.  Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2. , 2017, Journal of the American Chemical Society.

[20]  Anmin Zheng,et al.  31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. , 2017, Chemical reviews.

[21]  S. Xie,et al.  Nanoparticulate Pt on mesoporous SBA-15 doped with extremely low amount of W as a highly selective catalyst for glycerol hydrogenolysis to 1,3-propanediol , 2017 .

[22]  Haidi Xu,et al.  Promotion of catalytic performance by adding W into Pt/ZrO 2 catalyst for selective catalytic oxidation of ammonia , 2017 .

[23]  W. Zhou,et al.  Glycerol Hydrogenolysis to 1,3‐Propanediol on Tungstate/Zirconia‐Supported Platinum: Hydrogen Spillover Facilitated by Pt(1 1 1) Formation , 2016 .

[24]  Wataru Ueda,et al.  Glycerol hydrogenolysis into useful C3 chemicals , 2016 .

[25]  Feng Deng,et al.  Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy. , 2016, Accounts of chemical research.

[26]  Xinwen Guo,et al.  Catalytic hydrogenolysis of glycerol to propanediols: a review , 2015 .

[27]  Yulei Zhu,et al.  Promoting effect of WOx on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt–WOx/Al2O3 catalysts , 2015 .

[28]  Yulei Zhu,et al.  SiO2 promoted Pt/WOx/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol , 2014 .

[29]  N. Amin,et al.  A perspective on catalytic conversion of glycerol to olefins. , 2013 .

[30]  Yoshinao Nakagawa,et al.  One-pot conversion of sugar and sugar polyols to n-alkanes without C-C Dissociation over the Ir-ReOx /SiO2 catalyst combined with H-ZSM-5. , 2013, ChemSusChem.

[31]  Kunshan Song,et al.  Preparation and characterization of WOx/ZrO2 nanosized catalysts with high WOx dispersion threshold and acidity , 2013 .

[32]  R. Palkovits,et al.  Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. , 2012, Angewandte Chemie.

[33]  Yoshinao Nakagawa,et al.  Heterogeneous catalysis of the glycerol hydrogenolysis , 2011 .

[34]  Hyunjoon Lee,et al.  Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia , 2011 .

[35]  Yunjie Ding,et al.  Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media , 2010 .

[36]  K. Tomishige,et al.  Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst , 2010 .

[37]  M. Jennings,et al.  Acid-, water- and high-temperature-stable ruthenium complexes for the total catalytic deoxygenation of glycerol to propane. , 2009, Chemistry.

[38]  Yulei Zhu,et al.  Direct Conversion of Glycerol into 1,3-Propanediol over Cu-H4SiW12O40/SiO2 in Vapor Phase , 2009 .

[39]  K. Lehnert,et al.  Production of Biomass-Derived Chemicals and Energy: Chemocatalytic Conversions of Glycerol , 2009 .

[40]  Arno Behr,et al.  Improved utilisation of renewable resources: New important derivatives of glycerol , 2008 .

[41]  I. Wachs,et al.  Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and raman spectroscopy , 2007 .

[42]  Qingrui Zhang,et al.  Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism. , 2007, Water research.

[43]  Tomohisa Miyazawa,et al.  Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin , 2007 .

[44]  S. Tavener,et al.  Zirconium phosphate supported tungsten oxide solid acid catalysts for the esterification of palmitic acid , 2006 .

[45]  Lifang Chen,et al.  Synthesis and characterization of tungsten-substituted SBA-15: An enhanced catalyst for 1-butene metathesis , 2006 .

[46]  Julien Chaminand,et al.  Glycerol hydrogenolysis on heterogeneous catalysts , 2004 .

[47]  G. Clet,et al.  Development of acidic sites in WOx/ZrO2 , 2001 .

[48]  G. Busca The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization , 1999 .