Milliwatt-Level Spontaneous Emission Across the 3.5–8 µm Spectral Region from Pr3+ Doped Selenide Chalcogenide Fiber Pumped with a Laser Diode

A spontaneous emission fiber source operating in the mid-infrared (MIR) wavelength range from 3.5 to 8 µm is demonstrated for the first time at output power levels of at least 1 mW. The source is a Pr3+-doped selenide chalcogenide, multimode, glass fiber pumped with commercially available laser diodes operating at 1.470 µm, 1.511 µm and 1.690 µm. This MIR spontaneous emission fiber source offers a viable alternative to broadband mid-infrared supercontinuum fiber sources, which are comparatively complex and costly. The MIR emission wavelength range is significant for molecular sensing applications across biology and chemistry, and in medicine, agriculture, defense, and environmental monitoring.

[1]  Virginie Nazabal,et al.  All-optical carbon dioxide remote sensing using rare earth doped chalcogenide fibers , 2019, Optics and Lasers in Engineering.

[2]  Kyong Hon Kim,et al.  Pr3+‐ and Pr3+/Er3+‐Doped Selenide Glasses for Potential 1.6 μm Optical Amplifier Materials , 2001 .

[3]  Virginie Nazabal,et al.  Dy3+ doped GeGaSbS fluorescent fiber at 4.4 μm for optical gas sensing: Comparison of simulation and experiment , 2016 .

[4]  Joseph Ganem,et al.  Infrared laser characteristics of praseodymium-doped lanthanum trichloride , 1994 .

[5]  J. Heo,et al.  Midinfrared emission properties of Pr3+-doped chalcogenide glasses at cryogenic temperature , 2003 .

[6]  Norman P. Barnes,et al.  Mid infrared lasers for remote sensing applications , 2016 .

[7]  Trevor M. Benson,et al.  Ultra-broadband mid-infrared emission from a Pr3+/Dy3+ co-doped selenide-chalcogenide glass fiber spectrally shaped by varying the pumping arrangement [Invited] , 2019, Optical Materials Express.

[8]  Réal Vallée,et al.  3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber. , 2014, Optics letters.

[9]  Samuel Poulain,et al.  Emission beyond 4  μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber. , 2018, Optics letters.

[10]  M. Kincl,et al.  Spectroscopy of infrared transitions of Pr3+ ions in Ga-Ge-Sb-Se glasses , 2009 .

[11]  Q. Nie,et al.  Effect of glass composition on the physical properties and luminescence of Pr 3+ ion‐doped chalcogenide glasses , 2019, Journal of the American Ceramic Society.

[12]  J. Schneider,et al.  Fluoride fibre laser operating at 3.9 /spl mu/m , 1995 .

[13]  Trevor M. Benson,et al.  Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics , 2015 .

[14]  Christos Markos,et al.  Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. , 2017, Optics express.

[15]  Virginie Nazabal,et al.  IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems , 2016 .

[16]  B. Bureau,et al.  Ga-modified As2Se3–Te glasses for active applications in IR photonics , 2015 .

[17]  A. Toncelli,et al.  Mid-infrared spectroscopy of Pr-doped materials , 2018 .

[18]  Jasbinder S. Sanghera,et al.  Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications , 2009 .

[19]  Y. Messaddeq,et al.  Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission. , 2018, Optics letters.

[20]  Tiefeng Xu,et al.  Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres , 2017 .

[21]  V. Nazabal,et al.  Mid-infrared guided photoluminescence from integrated Pr 3+ -doped selenide ridge waveguides , 2018 .

[22]  A. Seddon,et al.  Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers , 2018, Journal of Luminescence.

[23]  Leslie Brandon Shaw,et al.  Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber , 2001 .

[24]  Leslie Brandon Shaw,et al.  A 7-/spl mu/m praseodymium-based solid-state laser , 1996 .

[25]  Trevor M. Benson,et al.  Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass , 2015 .

[26]  V A Kamensky,et al.  High-Power As-S Glass Fiber Delivery Instrument for Pulse YAG:Er Laser Radiation. , 1998, Applied optics.

[27]  M. F. Churbanov,et al.  Peculiarities of 16-75 µm Pr3+ luminescence in Ge36Ga5Se59 glass , 2019, Optical Materials Express.

[28]  Slawomir Sujecki,et al.  Progress in rare-earth-doped mid-infrared fiber lasers. , 2010, Optics express.

[29]  G. E. Snopatin,et al.  Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: Preparation, investigation, simulation of laser characteristics , 2017 .

[30]  A. Seddon,et al.  Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber , 2019, Journal of Luminescence.

[31]  A. Trapananti,et al.  Nd3+:Ga-Ge-Sb-S glasses and fibers for luminescence in mid-IR: synthesis, structural characterization and rare earth spectroscopy , 2018, Optical Materials Express.

[32]  Y. Choi,et al.  Enhancement in lifetimes of the Pr3+: 1.6 μm emission in Ge-Ga-As-Se glasses with CsBr addition , 2003 .

[33]  M. F. Churbanov,et al.  Special pure Pr(3+) doped Ga3Ge31As18Se48 glass for active mid-IR optics , 2019, Journal of Luminescence.

[34]  D Furniss,et al.  Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber. , 2014, Optics express.

[35]  S. Jackson Towards high-power mid-infrared emission from a fibre laser , 2012, Nature Photonics.

[36]  Samuel Poulain,et al.  Room-temperature fiber laser at 392  μm , 2018, Optica.

[37]  A. Seddon,et al.  Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber , 2019, Optical Materials Express.

[38]  A. Seddon,et al.  True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass , 2016, 2016 18th International Conference on Transparent Optical Networks (ICTON).

[39]  J. Sanghera,et al.  Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses. , 1997, Optics express.

[40]  J. Ballato,et al.  The Temperature-Dependence of Multiphonon Relaxation of Rare-Earth Ions in Solid-State Hosts. , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[41]  Virginie Nazabal,et al.  Design of praseodymium-doped chalcogenide micro-disk emitting at 4.7 µm. , 2017, Optics express.

[42]  B. Bureau,et al.  7 to 8 µm emission from Sm3+ doped selenide fibers. , 2018, Optics express.

[43]  V. G. Plotnichenko,et al.  Preparation and investigation of Pr3+-doped Ge–Sb–Se–In–I glasses as promising material for active mid-infrared optics , 2017 .

[44]  Ole Bang,et al.  Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. , 2018, Optics letters.

[45]  B. Park,et al.  1.6 μm emission from Pr3+: (3F3,3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses , 2001 .

[46]  R. I. Woodward,et al.  Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing , 2018, APL Photonics.