Nonlocal generalized uncertainty principle and its implications in gravity and entropic Verlinde holographic approach
暂无分享,去创建一个
[1] R. El-Nabulsi. On maximal acceleration and quantum acceleratum operator in quantum mechanics , 2018 .
[2] R. El-Nabulsi. Nonlocal uncertainty and its implications in quantum mechanics at ultramicroscopic scales , 2018, Quantum Studies: Mathematics and Foundations.
[3] T. Peters. Gravitation , 2018, PHYSIK.
[4] Matthew J. Lake. Which Quantum Theory Must be Reconciled with Gravity? (And What Does it Mean for Black Holes?) , 2016, 1607.03689.
[5] T. Kamalov. Classical and quantum-mechanical axioms with the higher time derivative formalism , 2013, 1307.1697.
[6] B. Majumder,et al. Do the Modified Uncertainty Principle and Polymer Quantization predict same physics , 2012, 1207.6459.
[7] K. Nozari,et al. Natural cutoffs and quantum tunneling from black hole horizon , 2012, 1206.5621.
[8] D. Minic,et al. On the Minimal Length Uncertainty Relation and the Foundations of String Theory , 2011, 1106.0068.
[9] P. Pedram,et al. Minimal length and bouncing-particle spectrum , 2010, 1011.5673.
[10] P. Nicolini,et al. Neutrino oscillations as a novel probe for a minimal length , 2010, 1011.5225.
[11] T. Kamalov. Axiomatization of Mechanics , 2010, 1011.4256.
[12] J. Munkhammar. Is Holographic Entropy and Gravity the result of Quantum Mechanics , 2010, 1003.1262.
[13] E. Verlinde,et al. On the origin of gravity and the laws of Newton , 2010, 1001.0785.
[14] T. Kamalov. A model of extended mechanics and nonlocal hidden variables for quantum theory , 2009, 0909.2678.
[15] J. Suykens. Extending Newton's law from nonlocal-in-time kinetic energy , 2009 .
[16] Saurya Das,et al. Phenomenological implications of the generalized uncertainty principle , 2009, 0901.1768.
[17] Abhay Ashtekar,et al. Geometry of quantum mechanics , 2008 .
[18] J. Fabris,et al. Spiral galaxies rotation curves with a logarithmic corrected newtonian gravitational potential , 2007, 0710.3683.
[19] T. Kamalov. Physics of Non-Inertial Reference Frames , 2007, 0708.1584.
[20] K. Nozari,et al. Generalized uncertainty principle, modified dispersion relations and the early universe thermodynamics , 2006, gr-qc/0601092.
[21] K. Nozari,et al. Implications of minimal length scale on the statistical mechanics of ideal gas , 2006, hep-th/0601096.
[22] Geoffrey Burbidge,et al. A Different Approach To Cosmology , 2005, DAC 2005.
[23] L. Iorio. The post-Newtonian mean anomaly advance as further post-Keplerian parameter in pulsar binary systems , 2004, gr-qc/0410118.
[24] M. Cadoni. Letter: An Einstein-Like Theory of Gravity with a Non-Newtonian Weak-Field Limit , 2003, gr-qc/0312054.
[25] I. B. Khriplovich. Quantization of black holes , 1998, gr-qc/9804004.
[26] H. Kragh,et al. Heisenberg’s lattice world: The 1930 theory sketch , 1995 .
[27] Mann,et al. Hilbert space representation of the minimal length uncertainty relation. , 1994, Physical review. D, Particles and fields.
[28] M. Maggiore,et al. Quantum groups, gravity, and the generalized uncertainty principle. , 1993, Physical review. D, Particles and fields.
[29] E. R. Caianiello,et al. Quantum and other physics as systems theory , 1992 .
[30] E. E. Caianiello. Maximal acceleration as a consequence of Heisenberg’s uncertainty relations , 1984 .
[31] E. Caianiello. Is there a maximal acceleration? , 1981 .
[32] W. Tucker. Radiation Processes In Astrophysics , 1978 .
[33] J. Bekenstein. Black Holes and Entropy , 1973, Jacob Bekenstein.
[34] W. Heisenberg,et al. Zur Quantendynamik der Wellenfelder , 1929 .