Linear robust Generalized Proportional Integral Control of a ball and beam system for trajectory tracking tasks

In this article, the ball and beam trajectory tracking problem is tackled using a robust Generalized Proportional Integral (GPI) Controller. The controller is developed on the basis of the tangent linearized system model around the equilibrium point. The approximate linearized system is differentially flat, and hence, controllable. Flatness reveals that the resulting linearized system has an interesting cascade property which allows the simplification of the controller design. Experimental results are included to show the effectiveness of the controller in trajectory tracking and disturbance rejection control.

[1]  Jin H. Seo,et al.  A state observer for nonlinear systems and its application to ball and beam system , 2000, IEEE Trans. Autom. Control..

[2]  Hebertt Sira-Ramírez,et al.  A Robust Linear Field-Oriented Voltage Control for the Induction Motor: Experimental Results , 2013, IEEE Transactions on Industrial Electronics.

[3]  John Cortés-Romero,et al.  Control GPI-repetitivo para sistemas lineales con incertidumbre/variación en los parámetros , 2015 .

[4]  M. Fliess,et al.  Correcteurs proportionnels-intégraux généralisés , 2002 .

[5]  F. Andreev,et al.  Matching, linear systems, and the ball and beam , 2000, Autom..

[6]  John Y. Hung,et al.  Underactuated Robot Control: Comparing LQR, Subspace Stabilization, and Combined Error Metric Approaches , 2008, IEEE Transactions on Industrial Electronics.

[7]  P. Kokotovic,et al.  Nonlinear control via approximate input-output linearization: the ball and beam example , 1992 .

[8]  Zhiqiang Gao,et al.  Active disturbance rejection control: a paradigm shift in feedback control system design , 2006, 2006 American Control Conference.

[9]  Johan A. K. Suykens,et al.  Optimal control by least squares support vector machines , 2001, Neural Networks.

[10]  Ting-Li Chien,et al.  Control of AMIRA’s ball and beam system via improved fuzzy feedback linearization approach , 2010 .

[11]  Zongxia Jiao,et al.  Adaptive Robust Control of DC Motors With Extended State Observer , 2014, IEEE Transactions on Industrial Electronics.

[12]  Sanjay E. Talole,et al.  Performance Analysis of Generalized Extended State Observer in Tackling Sinusoidal Disturbances , 2013, IEEE Transactions on Control Systems Technology.

[13]  Naiyao Zhang,et al.  Trajectory planning and tracking of ball and plate system using hierarchical fuzzy control scheme , 2004, Fuzzy Sets Syst..

[14]  Junyi Cao,et al.  Polynomial-Method-Based Design of Low-Order Controllers for Two-Mass Systems , 2013, IEEE Transactions on Industrial Electronics.

[15]  H. Sira-Ramirez On the control of the "ball and beam" system: a trajectory planning approach , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[16]  Shuzhi Sam Ge,et al.  Boundary Output-Feedback Stabilization of a Timoshenko Beam Using Disturbance Observer , 2013, IEEE Transactions on Industrial Electronics.

[17]  Naif B. Almutairi,et al.  On the sliding mode control of a Ball on a Beam system , 2009 .

[18]  Shankar P. Bhattacharyya,et al.  Transient response control via characteristic ratio assignment , 2003, IEEE Trans. Autom. Control..

[19]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[20]  John Cortés-Romero,et al.  Flatness-based linear output feedback control for disturbance rejection and tracking tasks on a Chua's circuit , 2012, Int. J. Control.

[21]  M Ramírez-Neria,et al.  Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum. , 2014, ISA transactions.

[22]  Oliver Sawodny,et al.  An immersion and invariance based speed and rotation angle observer for the ball and beam system , 2013, 2013 American Control Conference.