Gyrokinetic simulations in general geometry and applications to collisional damping of zonal flows

A fully three-dimensional gyrokinetic particle code using magnetic coordinates for general geometry has been developed and applied to the investigation of zonal flows dynamics in toroidal ion-temperature-gradient turbulence. Full torus simulation results support the important conclusion that turbulence-driven zonal flows significantly reduce the turbulent transport. Linear collisionless simulations for damping of an initial poloidal flow perturbation exhibit an asymptotic residual flow. The collisional damping of this residual causes the dependence of ion thermal transport on the ion–ion collision frequency, even in regimes where the instabilities are collisionless.

[1]  Charlson C. Kim,et al.  Comparisons and physics basis of tokamak transport models and turbulence simulations , 2000 .

[2]  R. White,et al.  Excitation of zonal flow by drift waves in toroidal plasmas , 1999 .

[3]  Patrick H. Diamond,et al.  Effects of Collisional Zonal Flow Damping on Turbulent Transport , 1999 .

[4]  M. Rosenbluth,et al.  Dynamics of axisymmetric and poloidal flows in tokamaks , 1999 .

[5]  T. Hahm,et al.  Shearing rate of time-dependent E×B flow , 1999 .

[6]  T. Hahm,et al.  Turbulent transport reduction by zonal flows: massively parallel simulations , 1998, Science.

[7]  Marshall N. Rosenbluth,et al.  POLOIDAL FLOW DRIVEN BY ION-TEMPERATURE-GRADIENT TURBULENCE IN TOKAMAKS , 1998 .

[8]  Marshall N. Rosenbluth,et al.  The radial electric field dynamics in the neoclassical plasmas , 1997 .

[9]  W. Horton,et al.  Minimal model for transport barrier dynamics based on ion-temperature-gradient turbulence , 1997 .

[10]  Zhihong Lin,et al.  Neoclassical transport in enhanced confinement toroidal plasmas , 1996 .

[11]  Williams,et al.  Scalings of Ion-Temperature-Gradient-Driven Anomalous Transport in Tokamaks. , 1996, Physical review letters.

[12]  W. Horton,et al.  Theory of self‐organized critical transport in tokamak plasmas , 1996 .

[13]  Lin,et al.  Method for solving the gyrokinetic Poisson equation in general geometry. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Jose Milovich,et al.  Toroidal gyro‐Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes , 1994 .

[15]  G. Hu,et al.  Generalized weighting scheme for δf particle‐simulation method , 1994 .

[16]  William Dorland,et al.  Developments in the gyrofluid approach to Tokamak turbulence simulations , 1993 .

[17]  R. J. Groebner,et al.  An emerging understanding of H-mode discharges in tokamaks , 1993 .

[18]  Patrick H. Diamond,et al.  Theory of mean poloidal flow generation by turbulence , 1991 .

[19]  R. White,et al.  Canonical Hamiltonian guiding center variables , 1990 .

[20]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .

[21]  T. S. Hahm,et al.  Nonlinear gyrokinetic equations for tokamak microturbulence , 1988 .

[22]  Allen H. Boozer,et al.  Plasma equilibrium with rational magnetic surfaces , 1981 .

[23]  W. W. Lee,et al.  Gyrokinetic approach in particle simulation , 1981 .

[24]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[25]  A. Hasegawa,et al.  Nonlinear behavior and turbulence spectra of drift waves and Rossby waves , 1979 .

[26]  T. H. Stix,et al.  Decay of poloidal rotation in a tokamak plasma , 1973 .

[27]  Jacques Denavit,et al.  Comparison of Numerical Solutions of the Vlasov Equation with Particle Simulations of Collisionless Plasmas , 1971 .

[28]  John M. Dawson,et al.  Geodesic Acoustic Waves in Hydromagnetic Systems , 1968 .